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Abstract—We consider the problem of estimating a regulariza-
tion parameter, or shrinkage coefficient α ∈ (0, 1) for regularized
Tyler M-estimators (RTME). In particular, we propose a data-
dependent approach for estimating an optimal α based on maxi-
mizing a suitably chosen leave-one-out cross-validated (LOOCV)
likelihood function. Since the LOOCV approach scales linearly
with the number of samples n and hence is computationally
intensive, we propose a computationally efficient approximation
for the LOOCV likelihood function that permits selecting a near-
optimal choice for the shrinkage coefficient α. We demonstrate
the efficiency and accuracy of our proposed approach on high-
dimensional data sampled from heavy-tailed elliptical distribu-
tions, and show that it is consistently better than other methods
in the literature for shrinkage coefficient estimation.

I. INTRODUCTION

Tyler’s M -estimator (TME) is an accurate and efficient
robust estimator for the scatter matrix when the data are
samples from an elliptical distribution with heavy-tails, and
the number of samples n is larger than the data dimensionality
p [1], [2]. Elliptical distributions (introduced shortly) are
generalization of the multivariate Gaussian distribution and
are suitable for modelling empirical distributions with heavy-
tails, where such heavy-tails may be due to the existence
of outliers in the data [3]. In this setting, and under some
mild assumptions on the data, TME is shown to be strongly
consistent, asymptotically normal, and is the most robust
estimator for the scatter matrix for an elliptical distribution
in a minimax sense; minimizing the maximum asymptotic
variance (see Remark 3.1 in [1]). Unfortunately in the p > n
regime, TME is not defined. Various research works have
proposed regularized versions of TME based on Ledoit & Wolf
[4] linear shrinkage estimator whose performance depends
on a carefully chosen regularization parameter, or shrinkage
coefficient α ∈ (0, 1) [5]–[13].1 Our work here addresses the
question of shrinkage coefficient estimation for regularized
TME (RTME), and proposes a computationally efficient algo-
rithm for estimating a near-optimal value for this parameter.

Unfortunately, the recursive nature for the regularized TME
procedure makes selecting an optimal shrinkage coefficient for
this estimator a non-trivial problem. Arguably, three broad
approaches were considered for addressing this problem: (i)
oracle and random matrix theory (RMT) based approaches
[6], [10], [11], [16]–[18]; (ii) data-dependent approaches based

1Shrinkage coefficient estimation for the sample covariance matrix and
generalized M -estimators for elliptically distributed data was considered in
[14]–[16].

on cross validation techniques [5], [7], [9], [19]; and (iii)
maximum likelihood based approaches [13]. Oracle based
approaches are computationally efficient due their closed-form
solutions but may come short in terms of accuracy due to their
implicit assumptions on the data distribution, and the implicit
assumptions in their asymptotic estimates. Cross validation
techniques, on the other hand, are more accurate than oracle
based methods since they are data-dependent approaches. This
accuracy, however, comes at the cost of intensive computa-
tions which makes cross-validation techniques not a favorable
option for various applications. The maximum likelihood
approach was considered in [13] where the Authors develop
an approach, namely the expected likelihood (EL) method,
for selecting a near-optimal shrinkage coefficient for RTME
when used for specific problems in wireless communications
such as adaptive-filtering and estimating the signal’s direction
of arrival. While in such applications the noisy data samples
may be reasonably assumed to have an elliptical distribution,
the EL method cannot be considered a general approach for
estimating the shrinkage coefficient for RTME due to the
specific context and better controlled environments for such
problems in wireless communications.

In this work we propose a more general approach for
estimating an optimal shrinkage coefficient α for RTME. In
particular, we propose a data-dependent approach for selecting
an optimal α based on maximizing a suitably chosen leave-
one-out cross-validated (LOOCV) likelihood function. Since
the LOOCV approach scales linearly with the number of sam-
ples n and hence is computationally demanding, we propose
a computationally efficient approximation for the LOOCV
likelihood functions that eliminates the need for estimating
the regularized TME n times for each sample left out during
the cross-validation procedure. This efficient approximation
results in a significant speedup in the computation for the
LOOCV estimate, and permits selecting a near-optimal value
for the shrinkage coefficient α. On experiments using high-
dimensional data sampled from heavy-tailed elliptical distri-
butions, we show that the proposed approach is efficient and
consistently more accurate than other methods in the literature
at the expense of some moderate computations.

A. Notation and Setup

Scalars and indices are denoted by lowercase letters: x, y
and i, j, respectively. Vectors are denoted by lowercase bold
letters: x,y, and matrices by uppercase bold letters: X,Y.
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Sets are denoted by calligraphic letters: X ,Y , and spaces are
denoted by double-bold uppercase letters: R,S. The identity
matrix is denoted by I, and 0 is the vector with all zeros,
both with suitable dimensions from the context. For x ∈ Rp,
‖x‖ is the Euclidean norm. For a matrix A = (aij), ‖A‖F is
the Frobenius norm, Tr(A) is the matrix trace, and det (A) is
the matrix determinant. The space of symmetric and positive
definite (PD) matrices is denoted by Sp+. The unit sphere in
Rp is denoted by Sp, where Sp = {x ∈ Rp s.t. ‖x‖ = 1}.

1) Elliptical Distributions: Let z be a p dimensional ran-
dom vector (RV) generated by the following model [3], [20]:

z = µ + uS
1
2 y = µ + ux̃ , (1)

where µ ∈ Rp is a location vector, S ∈ Sp+ is a scatter
or shape matrix, y is drawn uniformly from Sp, and u is a
nonnegative random variable (r.v.) stochastically independent
of y. The resulting RV z from the model in (1) is an
Elliptically Distributed (ED) RV. Note that S in (1) is not
unique since it can be arbitrarily scaled with 1/u absorbing
the scaling factor u. The distribution function of u, known as
the generating distribution function, constitutes the particular
elliptical distribution family of the RV z. If z is an ED RV,
its probability density function (PDF) is defined as:

f(z;µ,S, gu) = det (S)
− 1

2 gu
(
z̄>S−1z̄

)
, (2)

where z̄ = (z − µ), and gu : R+ 7→ R+ is a nonnegative
decreasing function known as the density generator function
and is not dependent on µ and S, but dependent on the
generating distribution function of u. The density generator
function determines the shape of the PDF, as well as the tail
decay of the distribution. For any elliptical distribution, if its
population covariance matrix Σ exists, then Σ = cgS for some
constant cg > 0 that is dependent on gu.

II. REGULARIZED TYLER’S M -ESTIMATOR

Let Zn = (zi)
n
i=1 be a sample of n independent and

identically distributed (i.i.d.) realizations from the model in
(1) with location vector µ = 0 and scatter matrix S. Tyler’s
M -estimator (TME) can be derived as a maximum likelihood
(ML) estimator of the shape matrix for the Angular Cen-
tral Gaussian (ACG) distribution (introduced shortly) based
on the sample Zn [2]. Note that Zn can be written as
(u1x̃1, . . . , unx̃n). However, since the scalars u1, . . . , un are
unknown, there is a scaling ambiguity and one can only expect
to estimate S up to a scaling factor. TME overcomes this
limitation by working with the normalized samples: xi =
zi/ ‖zi‖ = x̃i/ ‖x̃i‖, 1 ≤ i ≤ n, where the scalars ui cancels
out. The PDF for the vectors x1, . . . ,xn is given by:

f (x; S) = (2π)−
p
2 Γ( 1

2 ) det (S)
− 1

2
(
x>S−1x

)− p
2 , (3)

where x ∈ Sp, Γ(·) is the Gamma function, and
Γ(p/2)/(2π)

p
2 is the surface area of Sp. The ACG density in

(3) represents the distribution of directions for samples drawn
from a multivariate Gaussian distribution with zero mean and
covariance matrix S [2]. Thus, only the directions of outliers

can affect TME’s performance but not their magnitude. Given
an i.i.d. random sample Xn = (x1, . . . ,xn) from a distribution
having the ACG density in (3), the likelihood of Xn with
respect to S is proportional to:

L (Xn; S) = det (S)
−n/2

n∏
i=1

(
x>i S−1xi

)− p
2 . (4)

Taking negative log of L (Xn; S) yields the following loss
function which will be relevant for our next discussions:

L (Xn; S) =
p

2

n∑
i=1

log
(
x>i S−1xi

)
+
n

2
log det (S) . (5)

Taking the derivative of L (Xn; S) with respect to S and
equating it to zero, the ML estimator for S is the solution
to the following fixed point equation:

Sn =
p

n

n∑
i=1

xix
>
i /(x

>
i S−1n xi) , (6)

where it is assumed that for i = 1, . . . , n, xi 6= 0 since
samples lying at the origin provide no directional information
on the scatter matrix. The solution to equation (6) can be found
using the following fixed point iteration (FPI) algorithm [21]:

Ŝt+1 =
p

n

n∑
i=1

xix
>
i /(x

>
i Ŝ−1t xi) , (7)

with Ŝ0 = I, or any arbitrary initial Ŝ0 ∈ Sp+ [21]. Theorem
2.2 and Corollaries 2.3 & 2.3 in [1] show that under some mild
assumptions on the data, the FPI algorithm in (7) almost surely
converges to the solution of (6), and the limiting solution Ŝ =
ŜT computed at the last iterate T is unique up to a positive
multiplicative scalar. To avoid the scaling ambiguity in Ŝ, [2],
[21] proposed the following iterations:

Ŝt+1 = p

n∑
i=1

xix
>
i

x>i Ŝ−1t xi

/
Tr

(
n∑
i=1

xix
>
i

x>i Ŝ−1t xi

)
, (8)

with Ŝ0 = I. If n > p(p− 1), the FPI algorithm in (8) almost
surely generates the solution to (6) and satisfies the constraint
Tr(Ŝ) = p (Corollary 2.2 in [1]).

Unfortunately, when p > n, TME is not defined; the LHS of
(6) must be a full rank symmetric PD matrix, while the RHS
is rank deficient.2 Various researchers have proposed different
flavours of a regularized TME (RTME) using the spirit of
Ledoit & Wolf linear shrinkage estimator [4]. In particular, the
works in [5]–[10] proposed slight variants from the following
regularized FPI algorithm:

Ŝt+1(α) = (1− α)
p

n

n∑
i=1

xix
>
i

(x>i Ŝ−1t (α)xi)
+ αI , (9)

where α > 0 is a regularization parameter (or a shrinkage
coefficient) that controls the amount of shrinkage applied to

2For TME, regularization may still be needed for p ≤ n ≤ p(p− 1) when
the points are not in general position, and/or the samples are not drawn from
an elliptical distribution.
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scatter matrix S towards the identity matrix I. In this work,
we consider the RTME algorithm proposed by Chen, Wiesel &
Hero (CWH) [6] for its better numerical properties over other
RTME variants. CWH’s algorithm requires that α ∈ (0, 1). In
addition, to avoid scaling ambiguity in Ŝ and attain a unique
solution, CWH’s algorithm requires a trace normalization step
after each FPI in (9) to ensure that Tr(Ŝ) = p ; i.e.

S̃t+1(α) = (1− α)
p

n

n∑
i=1

xix
>
i

x>i (Ŝt(α))−1xi
+ αI (10)

Ŝt+1(α) =
p

Tr(S̃t+1(α))
S̃t+1(α) . (11)

If α = 0, one restores the original unbiased TME in (7), and
if α = 1 the estimator reduces to the uncorrelated scatter
matrix defined by the scaled identity matrix αI. When p < n,
and the samples are drawn from an elliptical distribution, α is
expected to be zero (or close to zero) and results for existence
and uniqueness of the estimator still hold [1], [8]. When p ≥ n,
α is expected to be large; however to ensure the existence and
uniqueness of the estimator, α needs to be strictly greater than
1− n/p [8], [9].

Computational Complexity: A preliminary analysis for
Tyler’s FPI algorithm shows that the running time for each
iteration is O(np2 + p3) where O(np2) is the time needed to
compute the sum of rank-one matrices, and O(p3) is the time
needed to compute the inverse matrix Ŝ−1t (α). Since Ŝt(α)
is PD, an efficient computation for the inverse can be done
using Cholesky factorization: Ŝt(α) = LL>, where L is a
lower triangular matrix. Cholesky factorization requires 1

3p
3

flops: 1
6p

3 multiplications, and 1
6p

3 additions. Finally inverting
a triangular matrix will require p2 flops. If T iterations are
needed for the FPI algorithm to converge, its total running
time complexity will be O(T (np2 + p3)).

III. OPTIMAL CHOICE OF SHRINKAGE COEFFICIENT

Our objective is to find an appropriate α that is optimal
under a suitable loss function. If the true scatter matrix S is
known, one can choose a shrinkage coefficient that minimizes
an appropriate distance metric between Ŝ and S. Since S is
unknown, our approach will depend on the likelihood function
of Xn with respect to S in (4). In particular, for a fixed
ᾱ ∈ (0, 1), suppose that Ŝ(ᾱ) is an estimate of the true scatter
matrix S. Given the sample Xn, one can assess the quality
of Ŝ(ᾱ) with respect to Xn using the likelihood function
L (Xn; S) in (4) – or equivalently using the loss function
L (Xn; S) in (5) – by replacing S with Ŝ(ᾱ). Using this
approach, an optimal α with respect to Xn, denoted α∗, will
be the one that minimizes L(Xn, Ŝ(α)) over the range of
α ∈ (0, 1). That is,

α∗ = arg min
α∈(0,1)

L(Xn, Ŝ(α)) . (12)

The problem with this direct approach is that Ŝ(α) needs to
be computed using the sample Xn. That is, the sample Xn
will be used twice; first time to compute Ŝ(α), and a second
time to assess the quality of Ŝ(α) using L(Xn, Ŝ(α)) in (5).

This is known as double dipping and inevitably it leads to an
overfit estimate of the shrinkage coefficient α.

Cross validation (CV) techniques overcome this problem by
splitting the data into two non-overlapping samples [22]; one
sample for estimating S and the other sample for estimating
the loss L. Here, we propose to use the Leave-One-Out CV
(LOOCV) method for estimating S and L. In particular, for
1 ≤ i ≤ n, LOOCV splits Xn into two sub-samples: the
sample Xn\i = (x1, . . . ,xi−1,xi+1, . . . ,xn), and the sample
(xi) which contains the single data point xi. The sample Xn\i
will be used to estimate S(α) using CWH’s algorithm in (10)
& (11), while the single sample (xi) will be used to estimate
L(xi, Ŝ(α)). This process is repeated n times and the LOOCV
estimate will be the average of all L(xi, Ŝ(α)), 1 ≤ i ≤ n.
Using LOOCV, an optimal α can be computed as follows:

α̂∗CV = arg min
α∈(0,1)

LCV(Xn, α) , (13)

where LCV(·) is the Average CV Loss (ACVL) defined as:

LCV(Xn, α) =
1

n

n∑
i=1

L(xi, Ŝ(α;Xn\i)) , (14)

and Ŝ(α;Xn\i) is the regularized scatter matrix estimated from
the samples in Xn\i using CWH’s algorithm in (10) & (11).

In practice, one possible approach to solve problem (13)
can be using a simply grid search: (i) define a discrete range
of increasing values of α: (α1, . . . , αj , . . . , αm); (ii) evaluate
LCV(Xn, αj) for each αj using (14); and (iii) choose αj with
the minimum LCV(·).3 For a reasonably fine discretization for
the range of α’s, using this direct estimation approach will
yield an estimate for α that is reasonably close to its optimal
value. With little abuse of terminology, and for reasons that
will be discussed shortly, we refer to this method as the Exact
ACVL method.

A. Properties of LOOCV and its computational overhead

The Riemannian manifold of symmetric PD matrices Sp+
is a subset of Rp(p+1)/2 and is a compact space [21]. The
log likelihood function L(Xn,S) in (5) is geodesically convex
with respect to Sp+ [23], [19], and properties for this type of
likelihood functions has been studied in [24]. In particular,
L(Xn,S) maintains the three main properties of maximum
likelihood estimators [25]: consistency, efficiency, and func-
tional invariance. On the other hand, the LOOCV estimate
is almost an unbiased estimate in the following sense: for a
fixed ᾱ, ELCV(Xn, ᾱ) = EL(Xn−1, Ŝ(ᾱ)) [26, Ch. 24]; i.e.
LOOCV is an estimator for L(Xn−1, Ŝ(ᾱ)) rather than for
L(Xn, Ŝ(ᾱ)). Thus, from the consistency of L(Xn,S), and
for most interesting cases, we have that for large values of n,
the difference between L(Xn, Ŝ(ᾱ)) and L(Xn−1, Ŝ(ᾱ)) will
be negligible. In this sense we can state the following propo-
sition which will be useful for our approximation approach
introduced in the next section.

3Note that when p > n, and for existence and uniqueness results to hold,
α needs to be strictly greater than 1 − n/p [8], [9], and hence there is no
need to evaluate LCV(·) for α ≤ 1− n/p.
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Proposition 1. Under the i.i.d assumption for the samples in
Xn and from the consistency of L(Xn,S), we have that for
large values of n, with high probability, the difference between
LCV(Xn, ᾱ) and LCV(Xn−1, ᾱ) will be arbitrarily small.

LOOCV is also known for its high computational overhead.
Indeed, for a fixed ᾱ and for n samples in Xn, LOOCV
will make n calls for the FPI algorithm in order to com-
pute LCV(Xn, ᾱ) in (14). Thus, for m values of αj , for
j = 1, . . . ,m, the Exact ACVL method in (13) will require
mn calls for the FPI algorithm, which is prohibitive even
for moderate values of n. If the FPI algorithm requires T
iterations to converge, then the FPI algorithm will consume
O(mn ∗ T (np2 + p3)) time from the Exact ACVL method in
(13), where O(T (np2 + p3)) is the running time for a single
call for the FPI algorithm. Our objective in the following sec-
tion is to reduce the time consumed by the FPI algorithm in the
Exact ACVL method to be O(m∗T (np2 +p3)). In particular,
we propose an efficient approximation for Ŝ(α,Xn\i) in (14)
so that the FPI algorithm is invoked m times only instead of
mn times to compute LCV(Xn, α) in (13).

IV. EFFICIENT APPROXIMATION OF ACVL

The approximation approach proposed here is motivated
by the consistency of L(Xn, Ŝ(α)), the unbiased property for
the LOOCV estimate, and Proposition (1). For a fixed ᾱ, the
regularized FPI algorithm in (9) can be expressed as follows:

Ŝt+1(ᾱ) = (1− ᾱ)p

(
1

n

n∑
i=1

w−1t,i xix
>
i

)
+ ᾱI, where (15)

wt,i = x>i Ŝ−1t (ᾱ)xi , (16)

and 1 ≤ t ≤ T . That is, the first term for the regularized FPI
algorithm involves a weighted sample covariance matrix using
the weights wt,i and the FPI algorithm iteratively estimates
these weights until convergence. Let (ŵ1, ŵ2, . . . , ŵn) be the
optimal weights estimated using the sample Xn and the FPI
algorithm in (15). For initial matrix Ŝ0 ∈ Sp+, the final estimate
for the scatter matrix can be written as:

Ŝ(ᾱ;Xn) = (1− ᾱ)
p

n

n∑
i=1

1

ŵi
xix
>
i + ᾱI . (17)

Let Xn\i = (x1, . . . ,xi−1,xi+1, . . . ,xn). Similar to (17),
using ᾱ and initial matrix Ŝ0, the final estimate for the scatter
matrix based on Xn\i will be:

Ŝ(ᾱ;Xn\i) = (1− ᾱ)
p

n− 1

n∑
j=1
j 6=i

1

v̂j
xjx

>
j + ᾱI , (18)

where (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂n) are the optimal weights
estimated using Xn\i. From Proposition (1), and using initial
matrix Ŝ0 to obtain the estimates in (17) and (18), it is
expected that for large values of n the difference between
LCV(Xn, ᾱ) and LCV(Xn\i, ᾱ) will be arbitrarily small. Note
also that in this setting the difference between v̂j and ŵj will

be arbitrarily small as well; i.e. v̂j ≈ ŵj , for j 6= i, and
j = 1, . . . , n.

To introduce our proposed approximation, suppose that the
true scatter matrix S∗ ∈ S+p is known and that (S∗)−1 has
been computed. It follows that the final estimate Ŝ(ᾱ;Xn) in
(17) can be directly computed as follows:

Ŝ(ᾱ;Xn) =
(1− ᾱ)p

n

n∑
i=1

1

ŵ∗i
xix
>
i + ᾱI, where (19)

ŵ∗i = x>i (S∗)−1xi . (20)

Similarly, using (S∗)−1, the final estimate Ŝ(ᾱ;Xn\i) in
equation (18) can be directly computed as follows:

Ŝ(ᾱ;Xn\i) =
(1− ᾱ)p

n− 1

n∑
j=1
j 6=i

1

v̂∗j
xjx

>
j + ᾱI, where (21)

v̂∗j = x>j (S∗)−1xj . (22)

Note that both ŵ∗i in (20) and v̂∗j in (22) are dependent on the
true but unknown scatter matrix S∗ and in this case, v̂∗j = ŵ∗j
for j 6= i, and j = 1, . . . , n. Also, from Proposition (1), it
is expected that for large values of n, the difference between
LCV(Xn, ᾱ) using Ŝ(ᾱ;Xn) in (19) and LCV(Xn\i, ᾱ) using
Ŝ(ᾱ;Xn\i) in (21) will be arbitrarily small. However since S∗

is unknown, we propose to approximate Ŝ(ᾱ;Xn\i) in (21)
using the following estimate:

S̃(ᾱ;Xn\i) =
(1− ᾱ)p

n− 1

n∑
j=1
j 6=i

1

ṽj
xjx

>
j + ᾱI, where (23)

ṽj = x>j Ŝ(ᾱ;Xn)−1xj . (24)

That is, we plugin the regularized TME Ŝ(ᾱ;Xn) ∈ S+p
from (17) into equation (22) to obtain the new weights ṽj ,
for j 6= i, j = 1, . . . , n, then use the new weights ṽj to
obtain the new estimate S̃(ᾱ;Xn\i) in (23). Using the previous
approximation, the optimal shrinkage coefficient α∗ can now
be computed as follows:

α̂∗CV = arg min
α∈(0,1)

L̃CV(Xn, α) , where (25)

L̃CV(Xn, α) =
1

n

n∑
i=1

L(xi, S̃(α;Xn\i)) , (26)

and L̃CV(Xn, α) is the approximate ACVL. Due to this ap-
proximation, we refer to the method in (25) for estimating
the optimal shrinkage coefficient α∗ as the Approximate ACVL
method. For m values of α in (α1, . . . , αm), the FPI algorithm
will now consume O(m∗T (np2 +p3)) running time from the
Approximate ACVL method since the FPI algorithm is not
needed to compute S̃(α;Xn\i) for every i = 1, . . . , n.

V. EMPIRICAL VALIDATION

Similar to other works in the literature on RTME [6]–[10],
[27], we consider the Toeplitz matrix used in the work of
Bickel & Levina [28] to be the population scatter (or shape)
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Fig. 1. Comparison between the Exact ACVL method (solid blue line) and
Approximate ACVL method (solid red line) in three different settings: p < n
(left), p = n (middle), and p > n (right). The blue circle and red square
indicate the optimal values for α obtained from the Exact and Approximate
ACVL methods, respectively. The speedup in each setting is: 13×, 16×, and
11×, respectively.

Fig. 2. The solid blue line shows the NMSE between the population matrix
S and the scatter matrix ŜCWH estimated using CWH’s FPI algorithm for
values of α ∈ (0, 1) in three different settings: p < n (left), p = n (middle),
and p > n (right). The orange, red, and green solid vertical lines indicate the
shrinkage coefficients α̂cwh, α̂zw, and α̂aloocv, obtained using the method in
[6, Eq. 13], the method in [11, Eq. 12], and the Approximate ACVL method,
respectively.

matrix S for the elliptical RV in (1); that is S = (si,j) =
γ|i−j|, where γ = 0.85. Note that as γ → 1, S approaches
being a singular matrix, while as γ → 0, S approaches the
identity matrix. The random quantities u and y in (1) are
stochastically independent. We let y1, . . . ,yn’s be samples
from a p-variate standard Gaussian distribution N(0, I). For
r.v. u, we consider four different choices for heavy-tailed
distributions: (i) ui = 1, which makes {z1, . . . , zn} are
i.i.d. samples from N(0,S); (ii) ui =

√
d/χ2

d, a Student-
T distribution with degrees of freedom d = 3; (iii) ui =
Laplace(0, 1), a heavy-tailed distribution with finite moments;
and (iv) ui = Cauchy(0, 1), a heavy-tailed distribution with
undefined moments. Note that since TME and RTME operate
on the normalized samples xi, the scalars ui’s cancel out,
and the resulting plots become identical regardless of the
distribution of ui. Due to space limitations, we only show
the plots for the Cauchy distribution. The accuracy of an
estimator Ŝ is measured using the normalized mean squared
error (NMSE) ‖Ŝ−S‖2F /‖S‖2F . The convergence criterion for
all RTME algorithms is ‖pŜ/Tr(Ŝ)−pS/Tr(S)‖2F < ε, where
ε = 1.0e − 9 is the desired solution accuracy. The value of
p was set to 100, while n was set to three different values
{200, 100, 50} to consider three different scenarios: p < n,
p = n, and p > n, respectively. The value of C that appears
on the right y-axis in Figures 1 and 2 is for the ratio p/n.

Figure (1) compares the Exact ACVL method and the
Approximate ACVL method developed in the previous section
in terms of (i) average CV loss for each method (solid blue
line vs. solid red line), (ii) running time (in seconds), and (iii)
the optimal shrinkage coefficient α obtained by each method.

Note that in the p > n setting, and for the existence and
uniqueness results to hold for the estimated scatter matrix [8],
[9], the search range for the shrinkage coefficient α was set
to the interval (α0, 1), where α0 = 1 − n/p. In terms of
average CV loss, it can be seen that the Exact CV loss in (14)
(solid blue line) and the Approximate CV loss in (26) (solid
red line) are almost identical in the three settings: p < n,
p = n, and p > n. This confirms that the Approximate CV
loss proposed in the previous section is valid and sufficiently
close to the Exact CV loss, and hence it can be used to obtain
a near-optimal value for the shrinkage coefficient α. Indeed, it
can be seen that the optimal α obtained by the Approximate
ACVL method (red square) is reasonably close to the optimal
shrinkage coefficient obtained by the Exact ACVL method
(blue cricle) in the three settings. As expected, in terms of
running time, the Approximate ACVL method is at least 10
times faster than the Exact ACVL method in the three settings.

Figure (2) compares the shrinkage coefficient obtained using
the Approximate ACVL method in (25), denoted by α̂aloocv,
with the shrinkage coefficients obtained from the closed-form
expressions derived in the works of Chen, Wiesel & Hero
[6, Equation 13], denoted by α̂cwh, and Zhang & Wiesel
[11, Equation 12], denoted by α̂zw. It can be seen that the
Approximate ACVL method is consistent in providing better
estimates for the shrinkage coefficient α than the methods
in [6] and [11], especially for p ≥ n settings. Although the
methods in [6] and [11] are faster than the Approximate ACVL
method due to their closed-form expressions, it can be noticed
that these methods tend to underestimate the optimal value for
α, and their estimates tend to diverge from the optimal value as
p is growing greater than n. This is unlike the data-dependent
method proposed here which tend to obtain an estimate for
the shrinkage coefficient that is reasonably close to its optimal
value at the cost of some moderate computations.

VI. CONCLUDING REMARKS

This work proposes a new shrinkage coefficient estimator
for regularized Tyler’s M -estimators. The new estimator is
data-dependent and is based on minimizing the leave-one-out
cross-validated negative log-likelihood function for the esti-
mated scatter matrix with respect to the shrinkage coefficient
α. Since the LOOCV approach is computationally demanding
and scales linearly with the number of samples n, we proposed
an efficient approximation for the LOOCV loss that led to a
significant speedup (by one order of magnitude) in computing
a near-optimal estimate for the shrinkage coefficient α at the
cost of some moderate computations. On experiments using
high-dimensional data sampled from heavy-tailed elliptical
distributions, our proposed approach showed to be efficient and
consistently more accurate than other methods in the literature.
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