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ABSTRACT
Sets of vectors, or bags of features, are a common data rep-
resentation in domains such as computer vision and speech
recognition. However, learning a hypothesis (classification,
clustering, etc.) over sets of vectors is usually hindered by
their particular structure, in which each object in a data
set is represented by a different number of vectors of fixed
dimensionality. This nonuniform format of the input data
requires the learning algorithm to implicitly handle this non-
regular type of input, either by unifying the format of the
input, or by extracting the necessary information out of it.

In this paper we propose an unsupervised learning frame-
work for unifying the representation of sets of vectors. The
framework defines a metric space over probability distribu-
tions representing the sets of vectors, followed by a spectral
embedding step for these distributions. The spectral embed-
ding step offers an implicit clustering for the data, combined
with a reduction – by orders of magnitude – in the data’s
space complexity, resulting in significantly faster hypothe-
sis learning over the sets of vectors. Moreover, it allows
the framework to easily generalize to out-of-sample exam-
ples using the Nyström formula. Although the framework is
application independent, we test its validity in the context
of human action recognition from video sequences. Besides
the previously mentioned properties, the framework does in-
deed show better performance than other approaches in the
literature.

1. INTRODUCTION
Sets of vectors are a common data representation in var-

ious domains such as computer vision in which an image
is represented as a bag of features [31], motion analysis in
video in which a short video segment is represented as set of
spatio–temporal gradient vectors [29], and in speech recog-
nition in which an utterance is represented as a set of MFCC
vectors [19, 16], to mention a few. Despite their flexibility
and richness as a representation, a major obstacle for di-
rectly learning a hypothesis (classification, clustering, etc.)
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over sets of vectors is their special structure, in which each
object Di in a data set of objects D is represented by a differ-
ent number of vectors of fixed dimensionality, forming that
one set of vectors (SOV). This nonuniform format of the in-
put data requires the learning algorithm, and consequently
the algorithm designer, to implicitly handle this non-regular
type of input, either by unifying the format of the input, or
by extracting the necessary information out of it, such as
the (dis)similarity between two SOVs.

In this paper we propose a principled, application inde-
pendent framework that unifies the representation of SOVs
in order to ease hypothesis learning over this type of data.
In particular, as depicted in Figure (1), we propose an unsu-
pervised learning approach that maps each SOV, or bag of
features, to a single vector in a low dimensional Euclidean
space. The advantages of our proposed framework are as
follows. (i) The framework allows any learning algorithm
to be transparently applied on SOVs through their images
residing in the low dimensional subspace, and hence it frees
the learning algorithm from the overhead of accommodating
their special structure. (ii) The framework offers a reduc-
tion, by orders of magnitude, in the data’s space complexity,
which correlates directly with the computational complex-
ity of the learning algorithm, resulting in significantly faster
hypothesis learning. (iii) The framework is unsupervised,
and hence it does not require labels nor side-information.
However, if labels or side-information are available, they can
be naturally integrated into the framework. (iv) The spec-
tral embedding algorithm in the framework, together with
the Bhattacharyya-Riemann metric [1] used to measure the
similarity between two SOVs, reveal the natural clusters in
D ; i.e. as a by-product, the framework performs implicit
clustering for SOVs which is reflected on the images in the
low dimensional subspace. (v) The framework has a well
defined generalization to out-of-sample examples using the
Nyström formula [5], and hence it does not require retraining
the system whenever new data is available.

Framework overview We begin our discussion by for-
mally defining SOVs. Let D = {Di}

n
i=1 be a set of n ob-

jects Di, where Di can be a speech utterance or a short
video segment for instance1. Using a feature extraction
function φ, the data set D = {Di}

n
i=1 is transformed to

a set X = {Xi}
n
i=1 where φ : Di 7−→ Xi = {xi

1, . . . ,x
i
ti
},

xi
j ∈ R

p, and Xi is one set of vectors. Note that X is now a

1Notations: Bold small letters x,y are vectors. Bold cap-
ital letters A,B are matrices. Calligraphic and double bold
capital letters X , Y, X, Y denote sets and/or spaces. tr is
the matrix trace.



Figure 1: Outline of the proposed framework for
unifying the representation of sets of vectors. In
the first step, each bag of features, or set of vectors

(SOV) is modelled as a Gaussian distribution. In
the second step, a dissimilarity measure for the dif-
ference between Gaussian densities is selected and
used to fill a distance metric matrix (DMM) with
the dissimilarity, or the distance between every pair
of Gaussian distributions. Note that this matrix is
symmetric with zero diagonal elements (or self dis-
tances). In the third step, Euclidean embedding,
or classical MDS is used to collectively embed all
SOVs in a low dimensional Euclidean space. The fi-
nal result is that each bag i is represented by a single
vector yi.

set of sets ; a.k.a. a family or a collection of sets. Note also
that it is expected that each SOV Xi has a different number
of vectors in it.

Our framework has slight overlap with some ideas pro-
posed in [10, 12, 16, 31, 29], and before proceeding to our
approach, we briefly review these ideas. Also, it is worth
noting that the speech recognition community [19] has pi-
oneered learning over time-series or sequential data, which
are special cases of SOVs. In this work, we are concerned
with SOVs in general including sequential and time-series
data. Earlier approaches for hypothesis learning over SOVs
focused on directly measuring the (dis)similarity between
two SOVs using, for instance, dynamic time warping (DTW)
[22], and the earth mover’s distance [21]. Instead of mea-

suring the similarity directly on the SOVs, a more popular
approach in the computer vision community, is to construct
a codebook of words (or visual words) from all the vectors of
all SOVs, represent each SOV as a histogram of visual words,
and then define kernels over the histograms [31] to be used
for classification using support vector machines (SVMs).

A slightly different approach, which is adopted here, is
to model each SOV Xi as a multivariate Gaussian distribu-
tion Gi, where the mean vector µi and the covariance ma-
trix Σi are estimated using the sample mean and the sam-
ple covariance matrix for Xi respectively. Now that the set
X = {X1, . . . ,Xn} is replaced by the set G = {G1, . . . ,Gn},
a natural measure of (dis)similarity between two densities
are divergence measures such as, the Bhattacharyya diver-
gence dB, the symmetric Kullback & Leibler (KL) diver-
gence, a.k.a Jeffreys divergence dJ , and the Hellinger dis-
tance dH [13]. For instance, [12] uses SVMs with kernels
based on dB to classify images represented as bags of pixels,
while [16] uses SVMs with kernels based on dJ to classify
multimedia objects (video,audio) represented as bags of fea-
tures.

In the context of supervised learning over time-series data,
[10] models each class/category of SOVs using an HMM, fol-
lowed by extracting the Fisher score for each SOV Xi. The
Fisher score is a fixed size high dimensional vector that is
extracted from the HMMs’ parameters and represents the
time-series pattern Xi, which in turn, unifies the represen-
tation of variable length time-series patterns. Following this
representation, the authors define the Fisher kernel, and use
SVMs to classify the Fisher scores. Note that this frame-
work is completely different from the standard HMM based
approach used in speech recognition [19]. The advantage of
[10] is that it allows discriminative models such as SVMs,
which can not handle variable length input, to be indirectly
used for classifying such data.

In the same spirit of [10], but unlike the other approaches
geared towards classification using SVMs and hence focused
on the similarity between SOVs, we propose a principled,
application independent framework that focuses on unify-
ing the representation for SOVs, while discovering their la-
tent natural clusters. That is, instead of relying on kernels
to measure the similarity between two probability distri-
butions, the Gaussian distributions {G1, . . . ,Gn} are collec-
tively embedded in a low dimensional subspace R

p0 , where
in general p0 ≪ p, and p0 ≪ n. As shown in Figure (1), the
first step in the framework is to model each bag of features,
or SOV Xi as a Gaussian distribution Gi. In the second step,
a metric is used to fill a distance metric matrix (DMM) with
the distance between every pair of Gaussian distributions.
In the last step, using Euclidean embedding, each Gaussian
Gi is finally embedded as a single vector yi ∈ R

p0 .
The proposed framework is based on the theory of Eu-

clidean embedding [30, 9] which is the core of the classical
multidimensional scaling (MDS) algorithm [6]. The key in-
gredient for this embedding theorem is the distance measure
that quantifies the dissimilarity between two Gaussian dis-
tributions. Since this dissimilarity measure has to satisfy all
metric Axioms, we rely on a corrected divergence measure
derived from the Bhattacharyya divergence dB [1] to define
the distance between two Gaussian distributions. Although
we show the validity of this framework in the context of hu-
man action recognition in video, our proposed framework
is general enough to be applied to any type of data repre-



sented as SOVs, and it is not restricted to a particular class
of learning algorithms.

1.1 Preliminaries
A metric space is an ordered pair (M, d) where M is a

non-empty set, and d is a distance function, or a metric
defined as d : M × M 7→ R, and ∀ a, b, c ∈ M, the fol-
lowing Axioms hold: (1) d(a, b) ≥ 0, (2) d(a, a) = 0, (3)
d(a, b) = 0 iff a = b, (4) symmetry d(a, b) = d(b, a), and
(5) the triangle inequality d(a, c) ≤ d(a, b) + d(b, c). Semi-
metrics are relaxed versions of metrics, in which Axiom (3),
and the triangle inequality are not required to hold. A re-
sult of this relaxation is that semi-metrics do not respect
the geometry of metric spaces, and as a consequence, semi-
metrics can mislead an algorithm that relies on distance met-
rics since d(a, b) can be zero for any pair a, b and a 6= b.
Moreover, violating the triangle inequality results in violat-
ing the relative distances between the points. Note that the
Euclidean distance ‖x − y‖2 is a metric, but ‖x − y‖22 is
a semi-metric. Similarly, the generalized quadratic distance
(GQD) d(x,y;A) =

√

(x− y)⊤A(x− y), is a metric, but
d2(x,y;A) is a semi-metric, where A is a symmetric pos-
itive definite (PD) matrix. If A is not strictly PD, then
d(x,y;A) is also a semi-metric.

The family of p–dimensional Gaussian distributions is de-
noted by Gp, and for G ∈ Gp, it is defined as:

G(x;µ,Σ) =
1

(2π)
p

2 |Σ|
1

2

exp{− 1

2
(x− µ)⊤Σ−1(x− µ)},

where | · | is the determinant, x,µ ∈ R
p, Σ ∈ S

p×p
++ , and S

p×p
++

is the manifold of symmetric PD matrices.

2. EUCLIDEAN EMBEDDING
Before proceeding to embedding SOVs, we begin with

defining metric matrices for a set of points, their PD prop-
erties, and their low dimensional Euclidean embedding. For
a set of n unknown points, assume the matrix [dij ] = D ∈
R

n×n is given with all the mutual distances (or dissimilari-
ties) between the n points, such that dij = dji, dii = 0, and
dij ≥ 0, ∀ i, j. Note here that the points and the distance
function are not specified. Gower and Legendre [9] define a
metric matrix as follows:

Definition D is said to be a distance metric matrix
(DMM) if the metric (triangle) inequality dij + dik ≥ djk
holds for all triples (i, j, k).

Note that the metric d of any metric space (M, d) can de-
fine a DMM, while semi-metrics can not define DMMs since
Axiom (3) and the triangle inequality of metrics are not re-
quired to hold. Euclidean distance matrices (EDMs), for ex-
ample, share the same definition above since the Euclidean
distance is a metric. However, an EDM has a more specific
definition, which is Definition (2) in [9]:

Definition D is said to be an Euclidean distance matrix
(EDM) if the n points can be embedded in an Euclidean
space as {pi}

n
i=1, such that the Euclidean distance between

pi and pj is dij , ∀ i, j.

The definition, alone, does not state how to formally validate
whether D is an EDM or not. The necessary and sufficient
condition for D to be an EDM is in Theorem (III) in [30],
and Theorem (4) in [9] which is stated after the following

definitions. Let D be defined as above, and let [− 1

2
d2ij ] =

S ∈ R
n×n, ∀ i, j. Define the centering matrix H ≡ Hn×n =

In×n − 1

n
11⊤, where I is the identity matrix, and 1 is a

vector of ones.

Theorem 2.1. D is an EDM if and only if the matrix
K = HSH is positive semi–definite (PSD).

Young and Householder [30] further discuss the reverse di-
rection of the theorem. That is, if K is symmetric and PSD,
then there exist a set of n real points in an Euclidean space
with mutual distance dij = dji, and these points can be ob-
tained as follows. Since K is symmetric and PSD, by eigen
decomposition of K to VLV⊤, where the columns of V are
the eigenvectors of K, L = diag{ℓ1, . . . , ℓp0 , 0, . . . , 0} is its
eigenvalue matrix, and ℓ1 > ℓ2 > · · · > ℓp0 , then the coordi-

nates of these n points are the rows of the matrix Y = VL
1

2 ,
where Y ∈ R

n×p0 .
The key observation here is that from Theorem (2.1) and

the previous definitions, it follows directly that if K is sym-
metric and PSD, then D is also a DMM. Hence, given only
a DMM, and not necessarily an EDM, one can easily obtain
its representing set of n real points in an Euclidean space
R

p0 , with p0 ≪ n. Recalling the definition of a metric space
(M, d) (see Preliminaries), a DMM can represent the mutual
distances between all the elements of the non-empty set M
since d is a metric by definition. Therefore, for any metric
space (M, d), where M can be any nonempty set of objects
(images, video clips, speech utterances, etc.), it is possible
to obtain an Euclidean embedding for this set as long as
d is a metric. Note that matrix K is in fact a centralized
dot product matrix, or a centralized gram matrix, which de-
scribes the similarity between the original input points. If d
is a semi-metric, the similarity matrix K is not guaranteed
to be PSD, and hence the resulting low dimensional sub-
space will be a semi-metric space where metric properties
and relatives distances between points can be violated.

This is the rational for our proposed framework for SOVs.
After modelling each SOV Xi as Gaussian distribution Gi,
we obtain the non-empty set G = {Gi}

n
i=1. If dBR is the met-

ric for the set G = {Gi}
n
i=1, where dBR will be introduced

shortly, then the ordered pair (G , dBR) define a metric space,
and a DMM can be defined with the mutual dissimilarities
between all the elements of G using the metric dBR. It fol-
lows directly from Theorem (2.1) that the set G = {Gi}

n
i=1

can be embedded in a low dimensional Euclidean space R
p0 ,

where in general p0 ≪ p, and p0 ≪ n.

2.1 Classical MDS and Graph Embedding
Before characterizing the Bhattacharyya–Riemann metric

dBR, it is worth noting that Theorem (2.1) is the core of
the classical MDS algorithm [6]. If D is obtained from the
Euclidean distance between points, and the objective is to
find a low dimensional embedding for the data such that it
preserves all the distances between the points, then classical
MDS minimizes the following objective function:

J1(Y) = ‖YY⊤ −K‖2F , (1)

for which it can be shown that Y = VL
1

2 is its optimal
solution [6]. Indeed, the matrix D can be replaced with any
DMM without changing the final result. Further, using the
property that for a matrix A, ‖A‖2F = tr{AA⊤}, then the



objective function in (1) turns to the following:

J2(Y) = tr{Q(Q − 2K)} = tr{QB} , (2)

where the constant term KK⊤ is dropped, Q = YY⊤,
B = (Q − 2K) is symmetric and PSD, and tr is the ma-
trix trace. If B in Equation (2) is replaced by the Laplacian
function obtained from the neighbourhood graph of the orig-
inal data points, then minimizing J2 yields the solution of
Laplacian Eigenmaps [4]. Also, if B = (I − W)⊤(I − W),
where W is the matrix of reconstruction weights obtained
from the first step of LLE, or local linear embedding [23],
then minimizing J2 yields the solution of LLE. Note that
these reconstruction weights are also based on the neigh-
bourhood graph of the data points. In a similar way, and
despite the information they preserve through the embed-
ding, minimizing J2 can be linked to isomap [25], spectral
clustering algorithms [27, 17], tangent–corrected embedding
[8], and other spectral embedding methods that are based
on the neighbourhood graph of the data points.

Using this graph perspective, classical MDS is also a graph
embedding algorithm, however instead of constructing a neigh-
bourhood graph, it considers a fully connected undirected
graph for all the n points. In turn, the original data points
are the vertices of this graph, and the weight on the edge
between vertices i and j, i 6= j, is the Euclidean distance
dij , which induces the symmetric PSD similarity matrix K.
Using Theorem (2.1) and its consequences, each vertex i will
be finally embedded as a single vector yi ∈ R

p0 .
This graph perspective for classical MDS gives another

view for our proposed framework for SOVs. Since the set
X = {X1, . . . ,Xn} is replaced by the set G = {G1, . . . ,Gn},
we construct a fully connected undirected graph G(G , E ),
where G is the set of vertices, E is the set of edges, and the
weight on each edge eij ∈ E , i 6= j, is the dissimilarity be-
tween Gi and Gj . However, in order to make use of Theorem
(2.1), a distance metric is needed to describe the dissimilar-
ity between two Gaussians. This metric is introduced in the
next section.

3. CORRECTED DIVERGENCE MEASURES
The Bhattacharyya-Riemann metric used here for the dis-

similarity between two Gaussian densities is based on the
analysis of three closed form expressions for the divergence
between two Gaussian densities, G1 and G2, with µ1 6= µ2

and Σ1 6= Σ2 [1]. The first expression is the symmetric
Kullback–Leibler (KL) divergence, or Jeffreys divergence be-
tween G1 and G2 :

dJ (G1,G2) =
1

2
u⊤Ψu+ 1

2
tr{Σ−1

1 Σ2 +Σ−1

2 Σ1} − p, (3)

where Ψ = (Σ−1

1 + Σ−1

2 ), and u = (µ1 − µ2). The two
other expressions are the Bhattacharyya divergence dB and
the Hellinger distance dH , which are based on the Bhat-
tacharyya coefficient ρ that measures the similarity between
two probability distributions :

ρ(G1, G2) = |Γ|−
1

2 |Σ1|
1

4 |Σ2|
1

4 exp{− 1

8
u⊤Γ−1u},

where Γ = ( 1
2
Σ1 +

1

2
Σ2). The Bhattacharyya divergence is

simply − log[ρ(G1, G2)] :

dB(G1, G2) =
1

8
u⊤Γ−1u+ 1

2
ln{ 1

2
|Σ1|

−
1

2 |Σ2|
−

1

2 |Γ|}, (4)

while the Hellinger distance is :

dH(G1,G2) =
√

2[1− ρ(G1,G2)]. (5)

The measures dJ , dB and dH are symmetric, and by defini-
tion of a divergence [2], dJ(G1,G2) ≥ 0, dB(G1, G2) ≥ 0, and
dH(G1,G2) ≥ 0, where equality only holds when G1 = G2.
This is equivalent to Axioms (1), (2), (3) & 4 of a metric.
However, the triangle inequality Axiom is not satisfied for
dB and dJ , while it is for dH [13, 11]. Therefore, dJ and dB
are semi-metrics, while dH is a metric.

The reason that dJ and dB do not satisfy the triangle in-
equality for the case of Gaussian densities can be analyzed
as follows. It is known from [13, pp. 6,7] that dJ (G1,G2) is
a sum of two components; one for the difference in means
weighted by the covariance matrices (the first term), and the
other for the difference in variances and covariances (the
second term). Note that this explanation is also valid for
dB(G1,G2). The first term in Equations (3) and (4) is equiv-
alent to the GQD, up to a constant and a square root – i.e.
semi-metrics. The second term in Equations (3) and (4) is a
discrepancy measure between two covariance matrices that
is independent from µ1 and µ2. If µ1 = µ2 = µ, the first
term in Equations (3) and (4) disappears, and dJ(G1, G2)
and dB(G1,G2) yield the following:

dJ(G1,G2) = tr{Σ−1

1 Σ2 +Σ−1

2 Σ1} − p, and (6)

dB(G1,G2) = ln
{

|Γ||Σ1|
−

1

2 |Σ2|
−

1

2

}

, (7)

which are two semi-metrics for covariance matrices. There-
fore, dJ (G1,G2) and dB(G1, G2) are summations of two semi-
metrics, where the second term in (3) and (4) does not define
a proper metric for symmetric PD matrices on the mani-
fold S

d×d
++ . Although dH is a metric by definition, and can

be used for embedding, it is a product of two semi-metrics,
which are the terms comprising the Bhattacharyya distance.
This is unlike the corrected divergence measures introduced
shortly, in which each term is a well defined metric.

A symmetric PD matrix is a geometric object, and the
manifold S

p×p
++ has a specific structure with defined geomet-

ric properties, and equipped with a inner product that in-
duces a natural distance metric, or a Riemannian metric,
between all its elements. Förstner and Moonen [7], and in-
dependently X. Pennec [18], derived this distance metric for
S
d×d
++ . Due to space limitations, we do not derive the met-

ric here, however a concise derivation can be found in [26].
The Riemannian metric, by default, respects the geometry
of Sp×p

++ , which is unlike the second term in Equations (3)
and (4) that are derived from dJ(G1, G2) and dB(G1,G2), and
unaware of the geometry of Sp×p

++ . The distance measure sat-
isfies all the metric Axioms introduced earlier, it is invariant
to inversion, and invariant to affine transformations of the
coordinate system. For two matrices {A,B ∈ S

d×d
++ } the

distance between them is:

dR(A,B) = tr{ln2 Λ(A,B)}
1

2 , (8)

where Λ(A,B) = diag(λ1, . . . , λd) is the solution of a gen-
eralized eigenvalue problem (GEP): AV = ΛBV.

The metric dR is the rational underlying the corrected
divergence measures in [1], which for G1 and G2 are :

dJR(G1,G2) = (u⊤Ψu)
1

2 + tr{log2 Λ(Σ1,Σ2)}
1

2 , (9)



and

dBR(G1,G2) = (u⊤Γ−1u)
1

2 + tr{log2 Λ(Σ1,Σ2)}
1

2 , (10)

where Ψ ≻ 0, and Γ−1 ≻ 0. The first term in dJR and
dBR is similar to the first term of dJ(G1,G2) and dB(G1,G2)
respectively, except for the square root, which together with
the condition that Ψ and Γ−1 are strictly PD, ensure that
the first terms are GQD (see Preliminaries). The second
term in dJR and dBR is the Riemannian metric dR which
replaces the second term in Equations (3) and (4). Hence,
dJR and dBR are both metrics by construction since each
term is a properly defined metric. In addition, they are
invariant to affine transformations of the coordinate system
which is a property of quadratic distances, and a property
of dR as mentioned earlier. Finally, if µ1 = µ2 = µ, both
measures will yield the metric dR, while if Σ1 = Σ2 = Σ,
then dJR and dBR will yield the Mahalanobis distance, and
if Σ = I, both measures will be reduced to the Euclidean
distance between the means.

It is worth noting that during our experiments, dJR and
dBR yielded very similar results in various classification and
clustering tasks. This shows that the main difference be-
tween Equations (3) and (4) is the dissimilarity measure of
covariance matrices. Therefore, to reduce notations’ cum-
bersomeness, in the following sections we continue our dis-
cussion using one corrected measure only, which is dBR.

4. EMBEDDING SETS OF VECTORS
It is possible now to introduce our framework for embed-

ding SOVs. The set G = {Gi}
n
i=1, and the metric dBR define

a metric space (G , dBR), and hence an Euclidean embedding
for G can be obtained using the following procedure :

1. Define D ∈ R
n×n such that [dij ] = dBR(Gi, Gj), ∀ i, j.

2. Define KBR = HSH, where S = [− 1

2
d2ij ], and H is the

centering matrix as defined earlier. Since dBR is a metric,
then according to Theorem (2.1) KBR is PSD.

3. Perform an eigen decomposition for KBR to VLV⊤, and

construct the matrix YBR = VL
1

2 , where YBR ∈ R
n×p0 .

Now, each row i of YBR, which corresponds to SOV Xi, is a
vector yi in a low dimensional Euclidean space. Hence any
learning algorithm can be transparently applied on the set
{Xi}

n
i=1 through their corresponding images {yi}

n
i=1. Note

that this procedure is totally unsupervised and does not re-
quire any labels nor side-information.

4.1 Generalization to New Sets of Vectors
The procedure above describes the training phase for em-

bedding SOVs, where V, L, and p0 are the parameters
learned during that phase. Suppose we are given m new
SOVs {X ∗

1 , . . . ,X
∗
m} that were not included during the train-

ing phase, and it is desired to compute their low dimensional
embeddings. This is the problem of generalizing Euclidean
embedding to out-of-sample examples which was thoroughly
studied in [5] for algorithms such as classical MDS, LLE,
Isomap, Laplacian eigenmaps, and spectral clustering meth-
ods. Since all these algorithms share a spectral embed-
ding step, it was shown that all these methods are learning
eigenfunctions of similarity between input points, and for
which the Nyström formula [3] provides a method for gener-
alizing these algorithms to out-of-samples examples. Since

our framework exchanges the Euclidean distance in classi-
cal MDS with the metric dBR, then the Nyström formula
can be directly used to generalize our framework to the new
SOVs {X ∗

1 , . . . ,X
∗
m} as follows :

1. Model each new X ∗
j as a Gaussian G∗

j , for 1 ≤ j ≤ m.

2. Define D∗ ∈ R
m×n such that [d∗ji] = dBR(G∗

j ,Gi), for
1 ≤ j ≤ m, and 1 ≤ i ≤ n.

3. Define the similarity matrix K∗

BR:

K∗

BR = − 1

2
[D∗Hn×n − 1

n
1m1⊤

nDHn×n] , (11)

where H is the centering matrix defined earlier, and D is
the DMM matrix for the training set defined in step (1) in
the training phase.

4. Apply the Nyström formula on K∗

BR to obtain the em-
bedding for the out-of-sample examples {X ∗

1 , . . . ,X
∗
m}:

Y∗

BR = K∗

BRVL−
1

2 , (12)

where Y∗

BR ∈ R
m×p0 , V and L are the eigenvectors and

eigenvalues matrices, respectively, obtained in step (3) in the
training phase. Now row i of Y∗

BR represents the embedding
of SOV Xi.

From the generalization via the Nyström formula above,
it is possible now to emphasize the advantage of adhering to
metric properties via measures such as dBR and dH . The
benefits of dBR over dH , however, will be demonstrated in
the next section. Euclidean embedding via semi-metrics in-
stead of metrics will result in the following consequences:
first, a DMM can not be defined since Axiom (3) and the
triangle inequality of a metric may not hold, and second, it
follows that the resulting similarity matrix K will be indef-
inite.

A first option to overcome this situation is via metric MDS
[6], which defines a transformation by minimizing a stress (or
error) function. Unfortunately, this transformation does not
provide an embedding nor it can be considered a mapping,
and hence, generalization for out-of-sample examples can
not be obtained [28]. This is unlike our approach that has
a direct generalization via the Nyström formula. Another
solution is to approximate the matrix K to a nearby PSD
matrix by truncating the negative eigenvalues of L, or us-
ing minimum shift embedding [20] which adds the smallest
constant to L such that it transforms K to a PSD matrix.
Although generalization via the Nyström formula can be ob-
tained for the approximated matrix, our approach does not
need to rely on such approximations. Therefore, our pro-
posed framework using the metric dBR provides a direct un-
supervised low dimensional embedding for SOVs that does
not require approximations, and has a direct generalization
via the Nyström formula to out-of-sample examples.

5. EXPERIMENTS
We test the validity of our proposed representation in the

context of human action recognition from video sequences.
For this purpose, we use the KTH video data set for human
action recognition shown in Figure (2) [24]2. The data set
consists of video clips for 6 types of human actions (boxing,
hand clapping, hand waving, jogging, running, and walking)
performed by 25 subjects in 4 different scenarios (outdoors,

2http://www.nada.kth.se/cvap/actions/



Figure 2: Sample frames from the KTH video data
set for human action recognition.

outdoors with scale variation, outdoor with different clothes,
and indoors), resulting in a total number of video clips n =
6×25×4 = 600. All sequences were taken over homogeneous
backgrounds with a static camera with a frame rate of 25
fps. The spatial resolution of the videos is 160 × 120, and
each clip has a length of 20 seconds on average.

5.1 Representing Motion as Sets of Vectors
To extract the motion information, a dense optical flow is

computed for each video clip using the Lucas-Kanade algo-
rithm [15]3, resulting in a large set of spatio-temporal gra-
dients vectors describing the motion of pixels in each frame.
The gradient vector is normal to the local spatio-temporal
surface generated by the motion in the space–time volume.
The gradient direction captures the local surface orienta-
tion which depends on the local behavioural properties of
the moving object, while its magnitude depends mainly on
the photometric properties of the moving object, and it is
affected by its spatial appearance (color, texture, etc.) [14].

To capture the motion information encoded in the gra-
dient direction, first we apply an adaptive threshold based
on the norm of the gradient vectors to eliminate all vectors
resulting from slight illumination changes and camera jit-
ter. Second, each video frame is divided into h × w blocks
– typically 3 × 3 and 4 × 4 – and the motion in each block
is encoded by an m–bins histogram of gradient orientations.
In all our experiments, m is set to 4 and 8 bins. The his-
tograms of all blocks for one frame are concatenated to form
one vector of dimensionality p = m × h × w. Therefore, a
video clip Di with ti frames is finally represented as a set
Xi = {xi

1, . . . ,x
i
ti
}, where xi

j is a p-dimensional vector of
the concatenated histograms of frame j. Since histograms
of orientations from optical flow vectors can not differentiate
between two identical actions performed at different speeds,
we excluded the ‘walking’ and ‘running’ classes from the
data set. This resulted in n = 400 video clips, for 25 persons
performing 4 actions in 4 different scenarios.

5.2 Experimental Setting
After extracting the motion information from each video

clip Di and representing it as an SOV Xi as described above,
each Xi is modelled as a Gaussian distribution Gi with mean
vector µ̂i = 1

ti

∑ti
j=1

xi
j , and a covariance matrix Σ̂i =

1

ti−1

∑ti
j=1

(xi
j − µ̂i)(x

i
j − µ̂i)

⊤+γI , where γ is a regulariza-

3Implemented in Piotr’s Image and Video Toolbox for Mat-
lab http://vision.ucsd.edu/ pdollar/toolbox/doc/

tion parameter, and I is the identity matrix. The regulariza-
tion here is necessary to avoid the expected rank deficiencies
in Σi’s, which can be due to the small number of samples in
Xi with respect to the high dimensionality of the data, and
hence, this helps avoid over-fitting and outlier reliance. In
all our experiments γ was set to 1.

Using the algorithm described in the previous section,
all the Gaussians representing the motion of all video clips
were embedded in four low dimensional subspaces Rp0 using
four different dissimilarity measures; dJ(Gi,Gj) used in [16]
which is a semi-metric, dB(Gi, Gj) used in [12] which is also
a semi-metric, dH(Gi,Gj) which is a metric, and the metric
dBR(Gi,Gj). This resulted in 4 similarity matrices, KJ , KB ,
KH , and KBR respectively. Note that p0, the dimensional-
ity of the embedding space, is a free parameter that is either
user defined, or selected by cross validation.

To classify the different actions embedded in the different
low dimensional subspaces, we use a k–nearest neighbours
(k–NN) classifier, with k = {1, 3, 5, 7}. The empirical error
is measured using a 30 folds double cross validation proce-
dure, in which the data set is randomly split into a training
set (80%) and a test set (20%), and then search for k that
minimizes the training error of the current split. This op-
timal k is used to obtain the test error of one trial. This
process is repeated 30 times, and the final empirical error
(with standard deviation) is the average test error over all
the 30 trials. Since p0 is a free parameter, the optimal p0
for each embedding is selected based on the lowest empirical
error, where p0 ∈ [2, 50].

Before proceeding to the results, it is worth noting that
selecting optimal parameter values for m, h, w, and γ, and
computing the optical flow vectors, is a fundamental ques-
tion of model selection which is not addressed here. Never-
theless, even though we do not optimize all these parame-
ters, the proposed framework using the metric dBR appears
indeed to be a valid framework for unifying the representa-
tion of SOVs with various desirable properties as it will be
shown below.

5.3 Analysis of The Results
Our hypothesis before running the experiments is that the

embeddings obtained via dJ and dB will yield higher clas-
sification error than those embeddings obtained via dH and
dBR since dJ and dB are semi-metrics. According to The-
orem (2.1) and the definition of semi-metrics, the resulting
similarity matrix K is not guaranteed to be PSD for semi-
metrics, and hence the resulting embedding space will be a
semi-metric space in which metric properties and the rela-
tive distances between points are violated. Table (1) shows
the classification error (with standard deviation) and the di-
mensionality of the embedding space for each dissimilarity
measure on the 4 feature sets extracted from the KTH data
set. It can be clearly seen that despite the dimensionality
p0, dH resulted in lower classification error than dJ and dB
did, while the embedding based on the proposed metric dBR

yielded the lowest error among all other dissimilarity mea-
sures. Although dH is a metric, dBR performed better since
it was able to better capture the natural grouping in the
data, and translate this in the low error rates in Table (1).

To see this natural grouping of the data, while being able
to compare the difference between the 4 embeddings, we
pick the 4 × 4 × 4 feature set from the 4 sets of features
shown in Table (1) since it yielded the lowest error rate
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Figure 3: The four similarity matrices KJ top left, KB top right, KH bottom left, and KBR bottom right.
Note the clear block structure for KBR compared to other matrices.

Table 1: Empirical error (with standard deviation) and the dimensionality p0 of the embedding space obtained
by the four different dissimilarity measures on the four feature settings obtained from the KTH data set.

m× h× w dJ dB dH dBR

4× 3× 3 21.2 (3.8), p0 = 11 20.2 (3.4), p0 = 30 19.7 (3.7), p0 = 45 17.7 (4.7), p0 = 38
4× 4× 4 16.7 (3.6), p0 = 15 17.0 (4.1), p0 = 19 16.9 (3.7), p0 = 44 15.9 (3.2), p0 = 47
8× 3× 3 24.3 (2.9), p0 = 43 23.3 (4.9), p0 = 48 22.1 (3.8), p0 = 44 19.9 (3.8), p0 = 45
8× 4× 4 20.9 (4.6), p0 = 20 20.4 (3.8), p0 = 22 20.4 (3.7), p0 = 22 18.8 (3.5), p0 = 47

with all dissimilarity measures. Using this feature set, we
obtain the 4 similarity matrices KJ , KB , KH , andKBR and
shown in Figure (3) – better seen on a display. It can be
clearly seen that KBR has 3 clear block structures along the
diagonal, indicating three main categories in the data, which
has originally 4 classes. Further, the top-left block of KBR

has further sub-blocks indicating finer categories within the
data. This is less clear for KH , and obscured in the case of
KJ and KB .

Further analysis can be made by comparing the eigen-
spectrum of the four similarity matrices KJ , KB , KH , and
KBR, and in particular, the tail of each eigen-spectrum
which reflects the adherence of each dissimilarity measure to
the metric properties. From Theorem (2.1), we know that
only metrics will yield PSD similarity matrices K. This is
exactly depicted in Figure (4) where the smallest eigenvalues
for KH and KBR, generated by dH and dBR respectively,
are greater than or equal to zero. This is unlike dJ and
dB which resulted in negative definite matrices KH and KB

respectively, and hence the negative eigenvalues in Figure
(4).

Finally, it is important to consider the reduction in space
complexity achieved by the proposed framework. If the min-

imum representation of a single video frame, using the first
feature set in Table (1) and a double precision format is
4 × 3 × 3 (m × h × w) ×4 (Bytes) = 144 Bytes per frame,
then for 400 clips, with 25 fps, and an average length for
video clips of 20 seconds, the total space required for the
data set is 400× 20× 25× 144 ≈ 27 MB. However, after us-
ing the proposed framework, the same data set will require
400 (clips) × p0 × 4 = 73 KB of memory for p0 = 47 using
dBR (see Table (1)). This is a significant reduction in space
complexity, and indeed learning a hypothesis over the em-
bedded data set will be much faster than learning a similar
hypothesis over the original representation.

6. CONCLUSION
We have proposed an unsupervised learning framework for

unifying the representation of sets of vectors. The frame-
work defines a metric space over Gaussian distributions rep-
resenting the sets of vectors, followed by a spectral embed-
ding step for these Gaussian distributions. The spectral
embedding step offers an implicit clustering for the data,
combined with a reduction in the data’s space complexity,
resulting in significantly faster hypothesis learning over the
sets of vectors. Moreover, the metric space and the spectral
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embedding step allow the framework to easily generalize to
out-of-sample examples using the Nyström formula.

Our experiments show (i) the validity of the proposed
framework in terms of unifying the representation over sets
of vectors while reducing their space complexity, (ii) the va-
lidity of the metric space defined over the Gaussian distri-
butions, and (iii) the validity of the implicit clustering for
the SOVs.

The proposed framework is not restricted to fully con-
nected graphs as presented here, and can be easily extended
to neighbourhood graphs defined over the SOVs. More-
over, while Euclidean embedding is a one way to achieve
a low dimensional embedding in R

p0 , the proposed frame-
work can exchange the Euclidean embedding with embed-
ding algorithms that rely on the graph Laplacian, achieving
by that spectral clustering over sets of vectors. These differ-
ent paths, however, remain to be explored in future venues.
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