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1 Differentiating eigenvalues and eigenvectors

There are two problems involved in differentiating eigenvalues and eigenvec-
tors. The first is that the eigenvalues of a real matrix A need not to be, in
general, real numbers – they may be complex. The second problem is the
possible occurrence of multiple eigenvalues. If the eigenvalues are complex,
their corresponding eigenvectors are complex. However, for real symmetric
matrices, their eigenvalues are real and hence their eigenvectors can be taken
to be real as well. Let A0 ∈ Rn×n be a symmetric matrix and let v0 be a
normalized eigenvector associated with eigenvalue λ0 of A0 so that the triplet
(A0,v0, λ0) satisfies the equation:

Av = λv and v>v = 1. (1)

The n+1 equations previously mentioned are implicit functions of the eigen-
values and eigenvectors of A0. To differentiate the eigenvalues and eigenvec-
tors for A0 we must show that there exists explicit functions λ = λ(A) and
v = v(A) satisfying Equation (1) in a neighborhood of A0, N (A0) ⊂ Rn×n
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and that λ(A0) = λ0 and v(A0) = v0. The second problem arises here. That
is, the occurrence of multiple eigenvalues.

Consider that this is not the case and that all eigenvalues of A0 are distinct
and real. Then the implicit function theorem guarantees the existence of
neighborhood N (A0) ⊂ Rn×n where the function λ and v exist and are C∞

– i.e.∞ times differentiable – on N (A0) and provided λ0 is a simple eigen-
value of A0. If, however, the λ0 is a multiple eigenvalue of A0, then the
conditions of the implicit function theorem are not satisfied.

In general, and in machine learning, we deal with real symmetric matrices
(covariance matrices, gram matrices, similarity matrices) so all their eigen-
values are real although their simplicity is not guaranteed. However, it is
more the case that we deal with real symmetric and (at least) semi–positive
and positive definite matrices, and hence all their eigenvalues are greater
than or equal to zero. Again, simplicity of eigenvalues is not guaranteed.

1.1 The differentiable of eigenvalues and eigenvectors
for the real symmetric case

Let A0 ∈ Rn×n be a symmetric matrix, and let v0 be a normalized eigenvector
of A0 associated with an eigenvalue λ0 of A0. Then a real–valued function λ
and a real vector function v are defined for all A ∈ N (A0) where N (A0) ⊂
Rn×n is a small neighborhood of A0 and that:

λ(A0) = λ0 v(A0) = v0 and (2)

Av = λv v>v = 1 ∀A ∈ N (A0). (3)

Moreover, if the functions λ and v are C∞ in the neighborhood N (A0), then
the derivative of eigenvalues and eigenvectors at A0 are:

dλ = v>0 (dA)v0 (4)

dv = (λ0I−A0)
+(dA)v0, (5)

where (λ0I−A0)
+ is the generalized Moore–Penrose inverse of (λ0I−A0).
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2 Derivatives of generalized eigenvalues and

eigenvectors – The symmetric case

The generalized eigenvalue problem (GEP) for a pair of symmetric matrices
A ∈ Rn×n and B ∈ Rn×n is defined by the system of equations:

Av = λBv and v>Bv = 1. (6)

Any solution (v, λ) is a a generalized eigen pair with v the generalized eigen-
vector and λ the generalized eigenvalue.

Now suppose the matrices A and B are matrix valued functions of a pa-
rameter θ. Then Equation (6) defines v and λ implicitly as a function of
θ. Suppose θ̂ is a point where B is positive definite (B � 0), and that the
eigenvalues λ are simple and positive. Also, consider that the matrix valued
functions A and B are C2, two times continuously differentiable, at θ̂. Then,
the implicit function theorem guarantees that the eigenvalues and eigenvec-
tors are differentiable at θ̂ and the partial derivative of λj with respect to θ
is :

∂λj
∂θ

= v>j

(
∂A

∂θ
− λj

∂B

∂θ

)
vj , 1 ≤ j ≤ n (7)

If A depends on one set of parameters and B depends on another set of
parameters, then this can be handled by concatenating the two sets of pa-
rameters and setting some of the partial derivatives to zero. To compute the
derivative of eigenvectors with respect to θ, let us define the matrix V as the
set of complete generalized eigenvectors, where V is nonsingular, and rewrite
the generalized eigenvalue problem (GEP) as follows :

AV = BVΛ and V>BV = I, (8)

where Λ = diag(λ1, . . . , λn). Then the partial derivative of v with respect to
θ is:

∂vj

∂θ
= −(A− λjB)−

(
∂A

∂θ
− λj

∂B

∂θ

)
vj −

1

2

(
v>j

∂B

∂θ
vj

)
vj, (9)

where 1 ≤ j ≤ n, and (A− λB)− = V(Λ− λI)+V>.
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If B does not depend on θ then:

∂λ

∂θ
= v>

∂A

∂θ
v (10)

∂v

∂θ
= −(A− λB)−

∂A

∂θ
v (11)

If in addition B = I, then

∂v

∂θ
= −(A− λI)+

∂A

∂θ
v (12)
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