
Fast and Regularized Local Metric for Query–based Operations

Karim Abou–Moustafa and Frank Ferrie
The Artificial Perception Laboratory

Centre for Intelligent Machines, McGill University
3480 University street, Montreal, QC, Canada H3A 2A7

{karimt,ferrie }@cim.mcgill.ca

Abstract

To learn a metric for query–based operations, we
combine the concept underlying manifold learning al-
gorithms and the minimum volume ellipsoid metric in
a unified algorithm to find the nearest neighbouring
points on the manifold on which the query point is lying.
Extensive experiments on standard benchmark data sets
in the context of classification showed promising and in-
teresting results with regard to our proposed algorithm.

1 Introduction

Query–based operations are used in a plethora of al-
gorithms in the literature of pattern recognition, ma-
chine learning and computer vision. A typical scenario
is to have a setX of high dimensional vectors (images,
image patches, feature vectors, etc.) where it is required
to find a subset of nearest neighbors or matches to a
point that is either within the same set or a new incom-
ing one. The Euclidean distance is usually the measure
of choice for assessing the similarity between points.
From a statistical perspective, a sober look at the Eu-
clidean distance can raise questions about its full valid-
ity when used with high dimensional data arising from
real life applications. Usually, such data are (1) High
dimensional, highly structured (images, proteins, etc.)
and nonlinear; (2) Measurements from various sources
at different scales and with various degrees of variabil-
ity and correlation; (3) Prone to various sources of noise
that may largely deviate measurements and give rise to
outliers in the data. These combined characteristics will
be referred to as “data complexity issues”.

By expanding the squared Euclidean norm‖x−y‖2
2

to (x−y)T (x−y) = (x−y)T I(x−y), whereI is the
identity matrix, one directly obtains an instance of the
general family of Mahalanobis distances between points

x andy: DΣ(x,y) = (x − y)T Σ−1(x − y), where
Σ is a symmetric and positive definite matrix. Replac-
ing Σ by I implies that the Euclidean distance takes for
granted that all variables are independent, the variance
across all dimensions is one and that covariances among
all variables are zero, a situation that is hardly attained
in real life data. Therefore, the Euclidean distance, by
definition, ignores the structure, scale, variance and cor-
relations in the data and consequently it is wise to say
that “in the absence of clear evidence of Euclidean ge-
ometry, the metric structure should be inferred from the
data” [9].

In our previous work [1], we introduced the Min-
imum Volume Ellipsoid Metric (MVEM) and the
Minimum Volume Ellipsoid of Nearest Neighbors
(MiniVenn) algorithm to learn the MVEM. The MVEM
is a similarity measure that tries to mitigate the ef-
fects of data complexity by using a parametrized Maha-
lanobis distance instead of the Euclidean distance. The
MVEM is defined independently for each point in a data
setX based on the information in a small neighborhood
around it. Hence, it is adaptively and locally defined for
each point (referred to as a query point) whether it is
within the original data set or a new incoming one.

However, MiniVenn and consequently the MVEM
suffer from two drawbacks. The first is that MiniVenn
does not consider the notion of intrinsic dimensionality
[5] in defining the similarity measure between points.
That is, the literature on manifold learning algorithms
assumes that despite the high dimensionalityd of the
input space, most of the data variability can be cap-
tured by far fewer dimensionsd0 than the dimension-
ality of the input space (d0 ≪ d). Accordingly, it
is assumed that the data actually lies on, or near (due
to noise), a lower dimensional nonlinear manifold that
captures most of the data variability, and is embedded
in the high dimensional input space. The dimensional-
ity of this lower dimensional manifold is the intrinsic
dimensionality of the data. The second drawback is due



to the computational requirements of MiniVenn. That
is, in order to compute the MVEM, MiniVenn has to
solve a determinant minimization problem under linear
inequality constraints which is a difficult convex opti-
mization problem. Directly solving this formulation of
the problem without further manipulation and using a
general purpose library for convex optimization [7] that
does not consider the special problem structure resulted
in a very slow algorithm for computing the MVEM.
This, in turn, hinders the usage of the MVEM in practi-
cal situations that require fast query–based operations.

Contribution : We are interested in learning a met-
ric for query–based operations that (1) considers the in-
trinsic dimensionality of the data and (2) is computed
using a fast and efficient algorithm that allows it to
be used in fast query–based operations. To this end,
we combine the concepts underlying manifold learning
algorithms and the minimum volume ellipsoid metric
(MVEM) [1] in a unified, fast and efficient algorithm
that tries to overcome data complexity issues.

The proposed algorithm is different from previous
metric learning algorithms that focus on learning a met-
ric specifically fork–NN (nearest neighbors) classifi-
cation, exemplified by [11, 8], in that theproposed al-
gorithm is unsupervised, self–adaptive for each new
query point, and defines the metric on the lower di-
mensional manifold on which the query point is ly-
ing. The proposed algorithmis also different from al-
gorithms that learn a global metric using similarity con-
straints (or side–information) [14, 2], or fully labeled
data fork–NN classification such as [13]. These al-
gorithms [14, 2, 13] learn aglobal metric through the
general family of Mahalanobis distancesDA(x,y) =
(x − y)T A(x − y) and the differences between these
algorithms are due to the constraints defining each met-
ric.

2 Modifying the MiniVenn algorithm

In [1] we introduced the MiniVenn algorithm to learn
the MVEM. This work strongly builds and extends our
previous work on the MVEM and MiniVenn specifi-
cally, therefore the interested reader is encouraged to
review [1] for more details and explanations. Due to
space limitations, we directly proceed with the details
of our contribution.

The modified MiniVenn algorithm, shown in Algo-
rithm (1), overcomes the computational bottleneck of
the original algorithm, and takes into consideration the
intrinsic dimensionality of the data via two added steps
to the algorithm. The algorithm proceeds as follows.
In Step 1, similar to the original algorithm, MiniVenn
defines a local neighborhoodNxq

for xq using the Eu-

clidean distance as a similarity measure. In Step 2, also
similar to the original MiniVenn, the algorithm com-
putes the robust estimate of the covariance matrixSq us-
ing the Minimum Volume Covering Ellipsoid (MVCE)
estimator of the setNxq

. The difference in the modi-
fied algorithm is in the new formulation and algorithm
used to compute the MVCE ofNxq

. Steps 3 an 4 are
the new steps in the algorithm and they are concerned
with manifold detection, estimation of the local intrin-
sic dimensionality atxq, and MVEM regularization. In
the following, each modification and addition will be
further explained in detail.

Algorithm 1 Regularized Minimum Volume Ellipsoid of Near-
est Neighbors :Learns a local metric for query pointxq on the man-
ifold on whichxq is lying.

Require: Xn×d, xq , m, τ andρ whereXn×d is the training set

with n d-dimensional samples,xq is the query point,m ≥ d+1

is a user input that controls the size of the neighborhood,τ > 0

is the threshold to select the leading (tangent) directionswith

large eigenvalues along the manifold andρ ∈ [0, 1] is the

MVEM regularization parameter.

1: Find the setNxq that has them nearest neighbors toxq using

the Euclidean distance.
2: Compute the robust estimate of the covariance matrixSq de-

fined by the MVCE estimator for the setNxq and centrexq

using Titterington algorithm [12].

3: Compute the eigen decomposition ofSq = VLVT whereV =

[V1 . . . Vd], L = diag(λ1, . . . , λd) are the matrices of eigen-

vectors and eigenvalues respectively andλ1 > λ2 > · · · > λd.

4: Select thed0 leading eigenvalues such thatλ[1 : d0] > τ and

form the matrixL̃ = diag(ρ, . . . , ρ, 1
λd0+1

, . . . , 1
λd

)

5: return S̃
−1
q = VL̃VT

Fast computation of the MVCE Let Nxq
=

{xj | 1 ≤ j ≤ m, xj ∈ X} be the set of nearest neigh-
bors to the pointxq. The MVCE ofNxq

with centrexq

is denoted byE and is parameterized by a symmetric
and positive definite matrixSq ∈ R

d×d as follows [3]:

E = {xj | ‖S
−

1
2

q xj − b‖2

2
≤ 1, ∀j}, (1)

whereb = S
−

1
2

q xq. SinceV (E) ∝ det(S−1
q ), where

V (E) is the ellipsoid’s volume, minimizing this volume
can be formulated as follows:

min
Sq

log detSq, s.t. ‖S
−

1
2

q xj − b‖2

2
≤ 1, ∀j. (2)

The objective and the constraints in (2) are convex in
S−1

q , therefore this optimization problem has a unique
global optimal solution. However, as in [1], directly
solving this optimization problem using standard con-
vex optimization libraries such as CVX [7] showed to



be computationally expensive and not efficient for prac-
tical situations. Alternatively, the dual of this optimiza-
tion problem, thanks to Titterington [12], is easier to
optimize and has a very fast and efficient algorithm to
compute it (see [12] for algorithm details) :

max
Sq,Φ

log det(Sq) s.t. Φ ∈ R
m, Φ ≥ 0, ΦT e = 1 (3)

Sq =

m∑

j=1

φj(xj − xq)(xj − xq)
T + γI

whereΦ is the vector of dual variablesφj , γ ≥ 0 andγI

is an extra constraint that guarantees a minimal diame-
ter of the ellipsoid in all directions. This would prevent
the ellipsoid from collapsing to zero volume especially
in high dimensional spaces [4].

Manifold detection To detect the manifold on
which the query pointxq is lying, MiniVenn performs
an eigen–decomposition and a regularization step for
the robust estimateSq. The benefit of the eigen–
decomposition is twofold: (1) It can estimate the in-
trinsic dimensionality of the data using Fukunaga’s al-
gorithm [6] (which is the role of parameterτ ), and (2)
the orthogonal eigenvectors ofSq decide which vectors
are tangent or normal to the underlying manifold. That
is, the eigenvector associated with the smallest eigen-
value (or lowest variance inNxq

) is normal to the man-
ifold, while the eigenvector associated with the largest
eigenvalue (or highest variance inNxq

) is tangent to the
manifold. The latter is the main direction of interest
since it is the direction that goes along the manifold and
contributes the most to the similarity measure defined
for xq. Note that in ad–dimensional space and for a
d0–dimensional manifold withd0 ≪ d, there will be
approximatelyd0 tangent vectors associated with thed0

largest eigenvalues.
The Mahalanobis distance, however, measures the

similarity usingS−1
q , i.e. by taking the inverse of the

eigenvalues. Thus it assigns by that small weights
to high variance components (tangent eigenvectors)
and large weights to low variance components (normal
eigenvectors). It is at this point that the regularization
parameterρ is needed to emphasize the contribution of
the main tangent vectors over the contribution of both
normal and also less significant tangent vectors. More
specifically,ρ influences the notion of similarity of the
MVEM, however this influence is task and data depen-
dent since it can tune the MVEM according to the ob-
jective of the task under consideration.

3 Generalization of the MVEM

Generalization of the MVEM is controlled by the
MiniVenn’s four parameters:m, τ , ρ and implicitly γ

in Equation (3). Whilem and τ reflect the topolog-
ical properties of the data,ρ influences the notion of
similarity of the obtained metric. Using [6],τ can be
fixed for a data set since it is a threshold on the nor-
malized eigenvalues. Similarly,γ can be fixed for each
data set separately although it was fixed to either0 or
0.1 in all our experiments. More attention however, is
required to selectm and ρ. A large value ofm will
over–smooth the main tangent directions of the patch
on whichxq is lying, while a very small value will lead
to crude and rather fragile estimates of these directions.
An intuitive approach is to selectm andρ via an op-
timization procedure. This can be achieved by linking
the two parameters to an objective function that can be
optimized. The optimal objective function in this case
would be the objective function of the task under con-
sideration. Implicitly, this means that the metric (or the
MVEM) will be tuned to maximize or minimize this
objective function. For instance, in the case of our ex-
periments on query-based learning,m andρ were opti-
mized by a grid search to minimize the expected zero–
one lossE[L(Y, f(X))] = E[1−δ(Y, f(X))] (or miss-
classification rate) on the available training set, where
Y is the true label of the inputX, f(X) is the deci-
sion obtained from the classifier, and theδ(., .) is the
Kronecker delta function. Accordingly, since there is a
training phase to optimizem andρ directly on the task’s
objective function, the MVEM is expected to generalize
well on unseen data sets.

It is worth noting that when MiniVenn forms a local
neighborhood for the query point, it does not depend
on labels or side-information [14] from the data, but
rather on the similarity measure and the parameterm.
This is unlike other metric learning algorithms that rely
on the availability ofa priori information in the form
of fully/partially labeled data or side–information. The
importance and contribution of anya priori knowledge
only appears when optimizingm andρ as mentioned
earlier. Therefore, MiniVenn can be considered an un-
supervised metric learning algorithm in that regard.

4 Experimental results

The experimental setting for query–based operations
consisted of thirteen data sets, shown in Table 1, from
the UCI Machine Learning Repository [10] and ak–
Nearest Neighbours (k–NN) classifier with three differ-
ent values fork = (1, 3, 5). Since there are no explicit
training and test sets for the used UCI data sets, 10 Folds
Double Cross Validations (FDCV) were used to report
the error rate. In terms of comparisons, thek–NN clas-
sifier using the MVEM was compared tok–NN clas-
sifier using the Euclidean metric and a more dedicated



Table 1. The thirteen UCI [10] data sets used in
our experiments.

DataSet classes size dim.

Balance (bal) 3 625 4
Liver Disorders (bup) 2 345 6
Glass (gla) 7 214 9
Housevotes (hou) 2 341 16
Ionosphere (ion) 2 350 33
Iris (iri) 3 150 4
Lymphography (lym) 4 148 18
New–Thyroid (new) 3 215 5
Pima–Diabetes (pim) 2 768 8
TicTacToe (tic) 2 958 9
WDBC (wdb) 2 569 30
Wine (win) 3 168 12
Yeast (yes) 10 1484 6
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Figure 1. Comparing the error rates for thek–NN
classifiers (k = 1, 3, 5) using the three different met-
rics: Euclidean, LMNN [13] and MVEM on the thir-
teen UCI data sets.

metric learning algorithm, LMNN [13]1 that learns the
metric specifically fork–NN classification. Our hy-
pothesis is thatk–NN classifier using MVEM will be
very competitive with LMNN and consistently better
than ak–NN classifier using the Euclidean metric.

Figure (1) shows the error rates for the three classi-
fiers using the three different metrics. As a quantitative
measure for the overall performance of the three met-
rics, statistical significance tests withα−level of 5%
show that, on average, the MVEM error rate is statisti-
cally significant than the Euclidean error rate while not
statistically significant than LMNN. This confirms our
hypothesis that the MVEM will be consistently better
than the Euclidean metric while very competitive with

1The source code was downloaded from the author’s website

a more dedicated algorithm like LMNN. This results is
very relevant since MiniVenn had lessa priori informa-
tion during training and yet it has the same performance
as LMNN. These results motivate us to extend the pro-
posed algorithm and metric to the domain of cluster-
ing and unsupervised learning with complete absence
of side–information and labels.

Conclusion We have introduced an algorithm for
learning an adaptive metric for query–based operations.
The algorithm combines ideas from the minimum vol-
ume ellipsoid metric and from manifold learning algo-
rithms to define the metric on the lower dimensional
manifold of the query point. In the context of classi-
fication using ak–NN classifier, the metric showes very
promising results in this regard and is competitive with
other metric learning algorithms in the literature.
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