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Abstract. We propose an unsupervised “local learning” algorithm for
learning a metric in the input space. Geometrically, for a given query
point, the algorithm finds the minimum volume ellipsoid (MVE) cover-
ing its neighborhood which characterizes the correlations and variances
of its neighborhood variables. Algebraically, the algorithm maximizes the
determinant of the local covariance matrix which amounts to a convex
optimization problem. The final matrix parameterizes a Mahalanobis
metric yielding the MVE metric (MVEM). The proposed metric was
tested in a supervised learning task and showed promising and competi-
tive results when compared with state of the art metrics in the literature.

1 Introduction

The fact that many learning algorithms, supervised, unsupervised, or semi-
supervised, depend mainly on a “representative” and a “meaningful” distance
metric in the input space, imposes the problem of finding such a metric in the
very core problems of machine learning algorithms. The various benefits pointed
out in [5,6,9] of having a metric that can better describe similarities in the ab-
sence of a priori knowledge or side–information [5,9], point to the need for such
metrics. This is reflected in the current literature by many new algorithms that
tackled the problem directly and indirectly [5,6,7,8,9,11,12], and showed promis-
ing results in that regard. The contribution of this paper builds on this research
with an algorithm for learning a new distance metric in the input space. The
new metric, called the minimum volume ellipsoid metric (MVEM), can be seen
as a generalization of existing metrics induced by recent learning algorithms.

Two main objectives and advantages lie behind the MVEM design. First, it
is desirable to have a metric that does not depend on a priori knowledge, side
information as in [5,9], or data labels as in [6,7]. Second, the metric should not
depend on the learning paradigm. That is, for any two points x, y ∈ R

d, labeled
or unlabeled, from a training set or test set, it is desirable to replace ‖x − y‖2
by a distance function D(x,y) which carries more information on the similarity
between x and y.

Our outlook is statistical, with a motivation rooted in robust statistics, and
links to maximum likelihood estimation (MLE) with Gaussian distributions. The
MVEM is a parameterized version of the general Mahalanobis distance func-
tion with a special structure imposed on the symmetric positive definite matrix
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defining the metric. The special structure stems from combined statistical and
geometrical properties, with a useful algebraic interpretation that is used later in
the proposed algorithm for learning the MVEM. The proposed algorithm, called
MiniVenn (or minimum volume ellipsoid of nearest neighbours), depends primar-
ily on the concept of locality in the input space. For a given query point, with
its assigned neighborhood (k-Nearest-Neighbors, or ε-ball), similarities between
the query point and its neighbors can be found by means of the neighborhood’s
covariance matrix (i.e. local covariance). In an ideal setting, if the query point
is the mean of a normally distributed neighborhood, the covariance matrix de-
fines an ellipsoid which, in principle, should approximately 1 cover (or enclose)
the neighborhood 2. The induced Mahalanobis distance can measure the sim-
ilarity between the mean and the neighboring points while taking correlations
and variances into consideration. With real life data, however, this is hardly the
case. Due to the obvious non-normality of the neighboring points with respect to
the query point, the curse of dimensionality effect, nonlinearity of the data, and
noise, such an ellipsoid poorly covers the desired neighborhood and the induced
metric becomes unreliable.

The first motivation for the proposed MVE approach to define a metric stems
from the above observation. If the ellipsoid is reshaped to cover the desired
neighborhood, as MLE with a Gaussian component does, one can expect that
the covariance matrix will better reflect the local structure. Another primary
motivation, stems from the statistics literature [14], where the Mahalanobis dis-
tance is well known to expose outliers by assigning them very large distance
values. Therefore, should the Mahalanobis distance be well parameterized by
an accurate estimate of the covariance matrix, one can expect more accurate
distances and similarity measures [14].

The paper is organized as follows: First, the motivation for the MVEM is
presented in Section 2. Section 3 presents the algorithm for learning the MVEM,
followed by a review of related work and similarities with other metric learn-
ing algorithms. Experimental results are illustrated in Section 4, and finally,
conclusions are drawn in Section 5.

2 Motivation for the MVEM

The Euclidean distance has been and is still extensively used and embedded
in many algorithms of the pattern recognition and machine learning literature.
There are many reasons, however, that render the Euclidean metric completely
inappropriate. First, if the norm is to deal with very high dimensional structured
data, the curse of dimensionality and its consequences are inevitable. Second,
effects of the random noise in the data and missing values will be reflected in the
Euclidean metric. Third, despite an adequately sized training set, it is very likely
that the data set is not balanced, resulting in high and low density areas in the
1 Due to the infinite support of the Gaussian.
2 The axes of the ellipsoid lie along the eigenvectors of the covariance matrix, and the

squares of the axes’ lengths are its eigenvalues.
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input space, causing fragile estimation of densities and intrinsic dimensionality.
Moreover, the very definition of the Euclidean metric ignores the effect of scale,
variance and correlations of and among the variables. Thus the Euclidean metric
may not reflect the true geometry of the underlying manifold structure of points
under consideration.

The Mahalanobis distance, on the other hand, is well known in the robust
statistics literature as an outlier detector [14]. It exposes outliers by assigning
them very large Mahalanobis distances. This, however, depends on an accurate
estimate of the covariance matrix that parameterizes this distance. An intuitive
approach for obtaining such an estimate is via MLE with Gaussian components.
This, however, requires a large number of samples, and converges to a local
optimum which might result in an unnecessarily large variance. Our proposed
approach is to use a robust estimator for the covariance matrix parameteriz-
ing the Mahalanobis distance, where robustness is defined in a statistical sense
[17,18]. The MVE [15,16] is such a robust estimator with desirable properties
such as intuitive geometric meaning, its formulation as a convex optimization
problem which has a global unique solution, and its minimum variance.

2.1 Properties of the Mahalanobis Distance

The Euclidean distance between two points, x = (x1, . . . , xd)T and y = (y1, . . . ,
yd)T , in the d-dimensional space R

d is defined as: DE(x,y) =
√

(x − y)T (x − y).
It follows that all non zero points with the same distance from the origin o,
satisfy: x2

1+· · ·+x2
d = c2, c ∈ R

+, which is the equation of a spheroid. This means
that all components of an observation x contribute equally to the Euclidian
distance from x to the origin or any other reference point. Hence, DE(x,y) is
meaningful when the data have an equal variance across all its dimensions.

Real life data, however, are usually measurements from various sources at
different scales, and are subject to various noise sources. To account for such
variability, each component can be assigned a weight that is proportional to
the amount of variation across its values, such that components with high
variability should receive less weight than those with low variability. Let u =
(x1/s1, . . . , xd/sd), and v = (y1/s1, . . . , yd/sd); then, the distance between u
and v will be: DE(u,v) = DΣ(x,y) =

√
(x − y)T Σ−1(x − y) where Σ =

diag(s2
1, . . . , s

2
d), and s2

j is the variance of the data across dimension j. Now
the distance from x to the origin equals DΣ(x,o) =

√
xT Σ−1x, and all points

with the same distance to the origin satisfy: (x1/s1)2 + · · · + (xd/sd)2 = c2,
which is the equation of an ellipsoid centered at the origin with its principal
axes aligned to the coordinate axes.

By considering correlations between components, this will allow the ellipsoid
to rotate its axes and to increase/decrease its size, yielding the well known gen-
eral form of the distance between two points x and y, the Mahalanobis distance:
DΣ(x,y) =

√
(x − y)T Σ−1(x − y), where Σ is a symmetric positive definite

matrix, Σ � 0. Consequently, points with the same distance to the origin sat-
isfy: xT Σ−1x = c2, which is the general equation of an ellipsoid centered at the
origin.
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The general Mahalanobis distance enjoys all the properties of distance func-
tions that are defined on a metric space. That is, for any three points x, y,
and z in R

d, the following are satisfied: Symmetry: DΣ(x,y) = DΣ(y,x), Non
negativity: DΣ(x,y) > 0 if x �= y, Self reflection: DΣ(x,y) = 0 if x = y, and
Triangle inequality: DΣ(x,y) ≤ DΣ(x, z) + DΣ(z,y). Also, it is worth noting
that the Euclidean distance can be considered as a special case of the general
Mahalanobis form by letting Σ = I, where I is the identity matrix. Alternatively,
the general Mahalanobis distance can be seen as a projecting the original x on
the space of Σ−1/2 and using the Euclidean metric in that space.

2.2 Robust Statistics and the MVE Estimator

Robust statistics [17,18] is the stability theory of statistical procedures. It sys-
tematically investigates the effects of deviations from modeling assumptions on
known procedures, and if necessary, develops new better procedures [18]. The
primary concern of robust statistics is distributional robustness, i.e. the shape
of the true underlying distribution deviates slightly from the assumed model
(usually the Gaussian law) [17]. Another concern of paramount importance is
the design of estimators that can tolerate a large number of outliers before the
estimate is affected. Such estimators are known to have a high breakdown point
(BP). Finding robust multivariate location and scatter estimators is crucial to
make other multivariate techniques such as principal component analysis and
discriminant analysis more robust. In addition, distances based on these es-
timators are more precise than regular ones, and are better suited to expose
outliers [14].

The MVE estimator [15,16] is a robust estimator for location (mean) and
scatter (covariance matrix) with the highest possible BP value (50%). Geomet-
rically, the estimator finds the minimum volume ellipsoid covering, or enclosing
a given set of points. The MVE estimator is a generalization of the least median
of squares (LMS) estimator [15,16] for high dimensional data sets, with the extra
property of being equivariant to translation, scaling, orthogonal projection and
affine transformations. Formulation of the MVE covering a data set is illustrated
in the next section.

3 The Minimum Volume Ellipsoid

We consider the problem of finding the minimum volume ellipsoid (MVE) cov-
ering a set. Let X = {xi | 1 ≤ i ≤ m,xi ∈ R

d} be a bounded set, where m is the
number of vectors, and d is the dimensionality of the input space. The minimum
volume ellipsoid that covers X is known as the Löwner − John Ellipsoid of the
set X and is denoted Elj [2]. The Elj can be parametrized as follows:

Elj = {x | ‖Σx − b‖2 ≤ 1}, (1)
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where Σ ∈ R
d×d, Σ � 0, x and b ∈ R

d, and its center is Σ−1b. The general
ellipsoid can be seen as the inverse image of the Euclidean unit ball under an
affine transformation. Using the fact that Σ � 0, it follows that [2]:

V(Elj) ∝ det(Σ−1) ∝ 1
det(Σ)

, (2)

where V(Elj) is the volume of the ellipsoid Elj . Finding the minimum volume
ellipsoid covering X can be formulated as follows:

min
Σ

log det(Σ−1) or equivalently (3)

max
Σ

log det(Σ) (4)

subject to ‖Σxi − b‖2 ≤ 1, i = 1, . . . , m,

where the variables of this minimization are Σ and b, with an implicit con-
straint that Σ � 0 which forces the induced distance function to respect all
the previously mentioned properties of a metric. The minimization in (3) is a
convex optimization problem since the objective and the constraints are convex
in the variables Σ and b. This is very useful since, theoretically, it allows a
global minimum to be found away from local minima. The details of this convex
optimization problem are elaborated in [2].

Computing the minimum volume ellipsoid bounding or enclosing a data set
can be done in several ways, and the interested reader can see [7,3,13] for a nice
review. At the current stage of our research, all our experiments used the CVX
MATLAB toolbox for Disciplined Convex Programming [10]. CVX is a general
purpose solver that implements an interior point method algorithm that scales
efficiently with small to medium size problems.

3.1 The MVE Metric and the MiniVenn Algorithm

The basic idea of the MVEM is that the metric is learned from the perspective
of the point itself, should it be a training or a test point, labeled or unlabeled.
This should make the metric independent from the learning paradigm since it
does not depend on labels as in [6,7], nor on side–information [5,9]. In other
words, the metric tries to answer this question, How does a point perceive the
similarity between itself and other neighboring points? Based on the concept of
locality, the metric tries to find the fine differences between a point and its local
neighbors, and major differences between the neighborhood and other points in
the space.

To find such a metric, we present the Minimum Volume Ellipsoid of Nearest
Neighbors (MiniVenn) algorithm, shown in Algorithm 1. Given a query point xq,
the algorithm finds the MVE with xq as its center and covering its m nearest
neighbors. Recalling the relation in (2), the MiniVenn actually finds a symmetric
positive definite matrix with maximum determinant that can parameterize a
Mahalanobis distance function from the perspective of xq. The MiniVenn starts
by finding the m nearest neighbors of xq using the Euclidean metric; this is
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Algorithm 1. Minimum Volume Ellipsoid of Nearest Neighbors (MiniVenn):
finds a symmetric positive definite matrix Σq with maximum determinant
.
Require: Xn×d, xq, and m, where X is the training set with n d-dimensional samples,

xq is the query point, and m ≥ d + 1 is a hyper-parameter that controls the size of
the neighborhood.

1: Find the set Xq that has the m nearest neighbours of xq using the Euclidean metric.
2: Find the MVE with center xq that covers Xq using the following convex optimiza-

tion:

max
Σ

log det(Σq)

subject to ‖Σqxj − b‖2 ≤ 1, 1 ≤ j ≤ m, xj ∈ Xq

‖Σqxq − b‖2 = 0

{The second constraint insures that xq will be the center of the MVE, since its
center is defined as Σ−1

q b.}
3: return Σq

equivalent to considering a spheroid around the query point that covers its m
nearest neighbors. Starting from the Euclidean metric is equivalent to setting
the initial covariance matrix to the identity matrix which simply reflects our
a priori assumption that all variables are independent with zero mean and unit
variance. This can also be considered as bootstrapping the MVE metric. Next,
the convex optimization in (3), reshapes the spheroid into a MVE covering the
same set, thereby learning the variances and correlations within and across all
variables. The learned Σq will be used to measure the Mahalanobis distance from
any point x to xq. Note that in terms of distances, for any two points x,y ∈ R

d,
DΣx(x,y) = DΣx(y,x) by symmetry. However DΣx(x,y) �= DΣy(x,y) since the
reference covariance matrix is different.

The advantage of the MVEM stems from its flexibility to be used in any learn-
ing paradigm. In an unsupervised setting, and with existence of side–information
[5,9], similar samples can be grouped in the same MVE, with the center being
their mean. The same applies in the semi–supervised context, when given par-
tially labeled data, which is similar to clustering with side–information. In both
cases, m acts as a hyper–parameter that controls clustering affinity.

For supervised learning, two scenarios can take place for learning the metric.
In the first, one can learn a full metric DΣ : R

d × R
d :	→ R, where MiniVenn will

find a MVE for each training point xi (i.e. Σi). On the one hand, in concept,
this makes the MVEM relatively close to the metric found in [5]. On the other
hand, as an algorithmic approach, this makes MiniVenn close to the initial step
of manifold learning algorithms such as [11,12], albeit without the dimensionality
reduction step. The second scenario, on the contrary, learning can be done online
using the lazy learning approach [4], where the MVE is computed only on request
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when a query point xq is presented to the training set, and m can be optimized
by cross validation. In both scenarios, since there is a training phase to optimize
m, the MVEM will generalize well on unseen data sets.

3.2 Links to Other Metric Learning Algorithms

Before proceeding, let us review some basic identities. Let A ∈ R
d×d � 0 be a

symmetric positive definite matrix; then, by eigen decomposition, A = V ΛV T ,
Λ = diag(λ1, · · · , λd), where the λjs are the eigenvalues of A, and the columns
of V are its eigenvectors. Then, det(A) =

∏d
j=1 λj � 0, and det(A−1) =

∏d
j=1 1/λj � 0. Also, ‖A‖2

F = ‖V ΛV T ‖2
F = ‖Λ‖2 � 0.

Algorithms found in [5,6,7,8] learn, in general, a parametrized Mahalanobis
metric of the form DA(x,y) =

√
(x − y)A−1(x − y), and differences between

these algorithms are due to the different structures imposed on A. The work in
[5,7,8] directly finds an A−1 with minimum ‖A−1‖2

F , i.e. a MVE, accompanied
with another term that stems from the problem context, such as minimization of
classification error, minimization of distances between similar points, or learning
relative relations between points, which ultimately leads to the different flavors of
algorithms. Alternatively, the metric in [6] finds directly a matrix A−1 � 0 that
minimizes the Kullback–Leibler divergence between an observed and a desired
distribution that will collapse classes to a single point.

The MVEM is relatively close to [5], with no explicit restriction on A to encode
similar samples differently than all other samples, as this is left to the parameter
m in the MiniVenn algorithm (1). This can be considered as letting the data
speak for itself, but it will be interesting to apply some local constraints similar
to those found in [5,9]. Moreover, it does not group similar points together;
rather, it is a locally based algorithm. Unlike the proposed methods in [6,7,8],
the MVEM does not have any constraints from the problem context; rather, it is
the parameter m that is adjusted according to the problem context, and hence
the flexibility of the algorithm.

The concept of parameterized Mahalanobis distances also has interesting links
with some recent manifold learning algorithms. Charting a manifold [11] and
Manifold Parzen Window [12], initially, fix a Gaussian at each training point
and then find a local covariance matrix A based on the neighboring samples.
To overcome the poor representation of local covariance matrices, MPW has
an embedded dimensionality reduction step by means of spectral decomposition
of A, and flattens those components with very small singular values. This acts
as a regularized MLE with a Gaussian component, thereby yielding Gaussian
pancakes, i.e. a Mahalanobis distance based on a low dimensional projection.
In charting a manifold, however, the charting step includes a maximum likeli-
hood estimation, i.e. directly maximizing det(A−1) (see [2] p. 355), yielding a
rotation and an increase of the ellipsoid size, thereby covering a more represen-
tative neighborhood. However, neither of the two approaches guarantees a small
variance for their estimate.
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4 Experimental Results

The experimental setting was designed to validate the MVEM concept and to
show its potential. Since the primary objective is to have a metric that can
replace the Euclidean metric in any learning paradigm, it is intuitive to evaluate
the “pure” impact of the new metric without additional aid or complexities
from sophisticated learning algorithms. That is, select a simple algorithm that
depends solely on the Euclidean metric and replace this metric with the proposed
MVEM. The basic and classical k–Nearest Neighbors classifier (k = 1) meets
such specifications, where optimization of the hyper–parameter m can be based
on the training error. Given a training set and a test set, we find the nearest
neighbor of each test point using the MVEM.

Table 1. Error rates(%) for EUC, LM, RCA, XING, and MVEM on eleven data sets
from the UCI repository using one–out–of–sample criterion

DataSet classes size dim. EUC LM RCA XING MVEM

Liver Disorders (bupa) 2 345 6 37.7 38.5 34.5 37.6 35.6
Glass 7 214 9 26.2 34.1 28.5 26.2 23.8
Ionosphere 2 351 34 11.4 16.2 8.3 12.5 8.8
Iris 3 150 4 4.0 2.7 4.0 2.6 2.6
New–Thyroid 3 215 5 5.1 6.9 4.1 5.1 3.2
Diabetes (pima) 2 768 8 32.0 32.4 30.4 32.0 30.4
satImage 6 4435/2000 36 10.6 12.4 22.4 10.6 10.0
Sonar 2 208 60 17.8 24.5 15.9 17.7 15.4
WDBC 2 569 30 9.1 7.9 8.8 9.1 8.4
Wine 3 168 12 4.5 7.3 2.2 10.1 2.8
Yeast 10 1484 6 48.2 46.9 47.2 no convergence 47.5

The MVEM was compared with four other metrics (or metric learning al-
gorithms). Initially, the MVEM was compared to the regular Euclidean metric
(EUC), and the Local–Mahalanobis (LM) metric obtained by the local covari-
ance matrix of each test point and its m neighbors from the training set, where
m is also optimized based on the training error. Next, the source codes for XING
[5] and RCA [9] were downloaded from the authors’ web sites in order to com-
pare their performance with the MVEM. XING [5] and RCA [9] algorithms were
specifically designed for unsupervised learning with side–information. Unlike the
MVEM, these algorithms not only depend on side–information; it is the amount
of available side–information that determines their performance. By providing
all the true labels for these two algorithms, the uncertainty in the labels is elim-
inated, and the algorithms should perform at their best.

All five metrics (or algorithms); EUC, LM, RCA [9], XING [5], and MVEM
were run on eleven problems from the UCI Machine Learning Repository [1],
shown in Table 1, with various sizes, dimensionalities, and difficulties. Except
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Fig. 1. Error difference bars for EUC, LM, RCA, and XING when compared with
MVEM. A positive difference implies that the MVEM is better than the other metric,
and negative difference implies the contrary.

for the Sat–Image data set which had explicit training and test sets, the error
rates, shown in Table 1, are based on a one–out–of–sample performance using
n runs where n is the number of samples in the data set. In order to speed–up
the CVX solver, as a preprocessing step, principal component analysis (PCA)
was applied to all data sets, except bupa, new–thyroid, pima, and yeast, to keep
99% of their total variance. PCA was obtained from the Sat–Image training set,
and from the training set after each split, from all other data sets. The hyper–
parameter m (for the case of MVEM and LM) was optimized based on the best
training error on the Sat–Image data set, and on the leave–one–out training
error after each split for all other data sets.

Discussion: Figure 1 shows error difference bars between all metrics and the
MVEM. It can be seen that in overall performance, the MVEM is consistently
as good or better than other metrics for most of the cases. In the light of these
results, it is worth noting that, in the cases where RCA is slightly better, it is
important to recall that RCA was designed for the case when partially labelled
data are available, and it achieved this performance when it was provided with
the full set of data labels. This is unlike the MVEM which did not use such extra
information during its training phase. This makes the MVEM very promising
for learning problems where the samples are not labelled, partially labelled, or
manually annotated with side–information.
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5 Conclusion

We have introduced an unsupervised local–learning algorithm for learning a
metric in the input space. The metric has desirable statistical and geometrical
properties, the corresponding algorithm does not depend on side–information,
and showed promising and competitive results when compared with state of the
art metric learning algorithms that depend on side–information.
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