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Abstract Measuring the difference between two multivariate Gaussians is
central to statistics and machine learning. Traditional measures based on the
Bhattacharyya coefficient or the symmetric Kullback–Leibler divergence do
not satisfy metric properties necessary for many algorithms. This paper pro-
poses a metric for Gaussian densities. Similar to the Bhattacharyya distance
and the symmetric Kullback–Leibler divergence, the proposed metric reduces
the difference between two Gaussians to the difference between their param-
eters. Based on the proposed metric we introduce a symmetric and positive
semi-definite kernel between Gaussian densities. We illustrate the benefits of
the proposed metric in two settings: (1) a supervised problem, where we learn
a low-dimensional projection that maximizes the distance between Gaussians,
and (2) an unsupervised problem on spectral clustering where the similarity
between samples is measured with our proposed kernel. 1
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1 Introduction

The Gaussian distribution plays a crucial role in multivariate statistics in
general, and in discrimination theory in particular [1]. A direct realization
of this fact is to note how Gaussian densities are pervasive in statistical
machine learning. A major aspect in discrimination theory, and consequently
in statistical learning, is to reflect how two probability distributions are close
to, or far away from each other; or more formally, quantify the separation or
similarity/dissimilarity between probability distributions. Recently, there has
been an increasing interest in defining dissimilarity measures on probability
distributions to tackle problems involving structured data and/or objects
not in vectorized form, when locally represented by generative models or
probability distributions [11, 26, 17, 20, 12, 19]. If X = {X1, . . . , Xn} is
the input space of such data points or objects (images, documents, proteins,
variable length sequences of audio or video frames, etc.), and P is the space
of a certain parametric family of probability distributions, then handling this
type of data is usually done by mapping each datum from X to a probability
distribution in P. Hence, defining a dissimilarity measure on P in fact induces
a dissimilarity measure on X .

Our contribution in this paper is three–fold. Due to the importance of
the Gaussian distribution, we define a separation or dissimilarity measure for
the family of d-dimensional Gaussian distributions Gd, such that the mea-
sure, among other requirements, should be a full metric; i.e. satisfy the three
metric axioms: positivity, symmetry and obey the triangle inequality. Based
on the three metric axioms satisfied by our metric, (1) we propose a kernel
between Gaussian densities and show that it is symmetric and positive semi–
definite (PSD), and (2) define an embedding for the objects in X into a low
dimensional subspace R

d0 where d0 ≪ n. As it will be shown here, (1) and
(2) can not be achieved if any of the three metric axioms are not satisfied.

Our proposed measure is in many ways very similar to the closed form
expressions of the Bhattacharyya divergence [3] and the symmetric Kullback–
Leibler (KL) divergence [16] between two multivariate Gaussian densities.
However, unlike those measures of divergence that are positive, symmetric,
and violate the triangle inequality [13], our proposed metric meets the three
metric axioms. As will be discussed below, all measures of divergence for
probability distributions are positive by definition of the divergence and can
be symmetrized [1, 6]. However, very few of them meet the triangle inequality
axiom.

Since our proposed measure is a full metric (by definition) on Gd, then
mapping from X to Gd yields interesting consequences for various learn-
ing algorithms. First; most classification and clustering algorithms assume
that X ⊆ R

d and hence, they rely on the Euclidean measure to define dis-
tances/similarities between points. If objects in X are complex structured
data – variable length time series data or not in vectorized form – it becomes
very difficult to apply these algorithms on such data. However, mapping these
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objects from X to Gd and using our proposed metric alleviates this difficulty
by using these algorithms on their images in Gd. Second; there have been
some serious advances recently in speeding up the k–means algorithm by
avoiding many distance computations between points and cluster centres [8].
This was possible to achieve through the triangle inequality property of the
Euclidean metric to compute upper and lower bounds on these distances. It
is straight forward that our proposed metric can use these same bounds to
speed up clustering in Gd. Third; by exponentiating the negative value of
the metric, one directly obtains a kernel KG : Gd × Gd → R that, as will be
shown here, is symmetric and PSD [5, 10]. This allows a smooth extension
for all kernel based methods [23] to be applied on objects mapped to Gd.

The triangle inequality axiom, in addition, allows us to consider a more
general aspect of our proposed measure. If DG ∈ R

n×n is a symmetric matrix
with zero diagonal elements (self distances) and filled with the mutual dis-
tances between the n objects in X using our proposed metric on Gd, and D̃G

is the centralized2 distance matrix of DG , then : (1) G = − 1
2D̃G is a PSD

matrix that defines a dot product (or a gram) matrix in a Hilbert space,
(2) there exists a matrix X ∈ R

n×d0 s.t. G = XX⊤ that provides for the
objects in X an embedding in R

d0 , and the dimensionality d0 is the rank of
the matrix G, and (3) for the case of n = 3, that G is PSD is equivalent to
the triangular inequality relation between the three points. These results are
credited to Young and Householder [27] (and recently by Roth et al. [22]) who
establish the equivalence between the triangle inequality axiom of a metric
and the positive semi–definiteness of the gram matrix G.

Our research work starts by analyzing the closed form expressions for
the Bhattacharyya divergence and the symmetric KL divergence between
two multivariate Gaussian densities. We note that both have very similar
properties and structure with regard to their closed form expression. Next,
we propose our dissimilarity metric for Gaussian densities. Using this pro-
posed metric, we introduce a kernel for Gaussian densities and show that it
is symmetric and PSD. Finally, using preliminary experiments, we validate
the proposed metric in two settings; (1) supervised, where the metric is max-
imized to learn a lower dimensional subspace for discriminant analysis, and
(2) unsupervised, where our proposed kernel is used with spectral clustering
to measure the similarity between images.

2 Related work

Earlier work on dissimilarity measures for probability distributions started
with kernels for generative models in order to plug them in discriminative

2 D̃G = QDGQ, where Q = I− 1

n
11⊤; i.e. the row sum and column sum of D̃G is zero.
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models such as SVMs. This includes the Fisher kernel by Jaakkola and Haus-
sler [11] and then the TOP kernel by Tsuda et al. [26].

Lafferty and Lebanon [17] study the statistical manifold of probability
distributions and arrive at heat or diffusion kernels. In particular, they find
closed form expressions for Gaussian distributions with spherical covariances
and for multinomial distributions, where the latter is used for text documents
classification. Moreno et al. [20] exponentiate the negative symmetric KL di-
vergence (2) to define a kernel between Gaussian distributions for an SVM
classifier: KKL = exp{−αdKL + β}, where α and β are scaling and shifting
parameters respectively. Since KKL is not PSD, the authors raise the need for
α and β to scale and shift the kernel until it gets closer to a PSD one. Jebara
and Kondor [12] define the probability product kernel (PPK) as a general
symmetric and PSD kernel that can be applied to various probability dis-
tributions and generative models: K(P1, P2) =

∫

X
pα1 (x)p

α
2 (x) = 〈pα1 , pα2 〉L2

,
where α is a positive constant. They consider two cases for α; 1) α = 1/2,
where they arrive at the Bhattacharyya affinity ρ, and 2) α = 1, where they
arrive at the expected likelihood kernel. More recently, Martins et al. [19]
expand the set of kernels based on information theoretic measures by incor-
porating nonextensive information measures as similarity measures between
probability distributions.

In independent and different research paths, Roth et al. [22] develop a
formal treatment for correcting dissimilarity measures that do not satisfy
the triangle inequality based on the results of Young and Householder [27].
The kernel community, in another direction, has recently developed a frame-
work for distances between probability distributions based on a Hilbert space
embedding of these distributions without explicit density estimation. They
further plug this distance it in a variety of problems arising in statistics
such as homogeneity tests, independence measurement and feature selection.
Please refer to Sriperumbudur et al. [25] for recent advances and results in
this direction.

3 Divergences and distances for probability distributions

In statistics and information theory, dissimilarity measures of probability
distributions are known as coefficients of divergence, Ali–Silvey distances [1],
or f –divergence according to Csiszar [6]. If P1, P2 ∈ P are two probability
distributions defined over the same domain of events E , then the divergence
of P2 from P1 is defined as df (P1, P2) = Ep1

{C(φ)} =
∫

E
p1(x)C(φ(x)) dx,

where df (P1, P2) ∈ [0,∞), p1, p2 are the probability density functions of P1

and P2 respectively, φ(x) = p1(x)/p2(x) is the likelihood ratio3, and C is a
continuous convex function on (0,∞).

3 The original definition of φ is the generalized Radon–Nikodym derivative of P1 with
respect to P2
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The divergence, according to Ali & Silvey or Csiszar, has to satisfy certain
requirements. The most relevant to our discussion is that it should be zero
when P1 = P2 and as large as possible when P1 and P2 are farthest apart.
This is exactly the first axiom of a metric. However, the divergence by defini-
tion, is not symmetric and need not to obey the triangle inequality. Although,
any divergence can be transformed to a symmetrized measure by summing
df (P1, P2) and df (P2, P1), it is neither trivial nor obvious how to satisfy the
triangle inequality. For the purpose of our discussion, we shall consider the
symmetric KL divergence [16] and Chernoff’s measure for discriminatory in-
formation [4] which yields the Bhattacharyya coefficient [3] and consequently
the Bhattacharyya divergence [3] and the Hellinger distance [21]. Note that
all these measures can be directly derived from df (P1, P2) (see [1] for more
details).

3.1 Distances and divergences for Gaussian densities

Before proceeding, we need to introduce our notation for multivariate Gaus-
sian densities. Let {Nj(x;µj,Σj) ∈ Gd | x, µ ∈ R

d, Σj ∈ S
d×d
++ , j = 1,2} be

two Gaussian densities where:

Nj(x;µj,Σj) = |2πΣj |−
1

2 exp{− 1
2 (x− µj)

⊤Σ−1
j (x− µj)}, (1)

| · | is the determinant, µj is the mean vector, Σj is the covariance matrix,
and S

d×d
++ is the space of real symmetric PSD matrices.

The symmetric KL divergence is based on Kullback’s measure of discrim-
inatory information: I(P1, P2) = −

∫

E
p1 log(p1/p2)dx. Kullback realizes the

asymmetry of I(P1, P2) and describes it as the directed divergence. To achieve
symmetry, Kullback defines the divergence as I(P1, P2)+I(P2, P1) and notes
that it is positive and symmetric but violates the triangle inequality [16] (p.
6,7). Hence, it can not define a metric structure. The closed form expression
for the symmetric KL divergence between N1 and N2 can be written as:

dKL(N1,N2) =
1
2u

⊤(Σ−1
1 +Σ−1

2 )u+ 1
2 tr(Σ

−1
1 Σ2 +Σ−1

2 Σ1 − 2I), (2)

where tr is the matrix trace, u = (µ1 − µ2), and I is the identity matrix.
Equation (2) describes dKL as a sum of two components, one due to the
difference in means weighted by the covariance matrices, and the other due
to the difference in variances and covariances [16] (p. 6,7). If Σ1 = Σ2 = Σ,
then dKL expresses the difference in means which is the exact form of the
Mahalanobis distance: (µ1 − µ2)

⊤Σ−1(µ1 − µ2). However, if µ1 = µ2 = µ,
then dKL expresses the difference, or the dissimilarity between covariance
matrices Σ1 and Σ2:
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dKL(N1,N2) =
1
2 tr(Σ

−1
1 Σ2 +Σ−1

2 Σ1 − 2I). (3)

The Bhattacharyya divergence, on the other hand, is a special case
of Chernoff’s [4] measure of discriminatory information: dCh(P1, P2) =
− ln(inf0<t<1

∫

E
pt1p

1−t
2 dx). Setting t = 1/2, although not the infimum but still

within the valid range, yields the Bhattacharyya divergence [3]: dB(P1, P2) =
− ln

∫

E

√
p1p2dx = − ln ρ(P1, P2), where ρ is the Bhattacharyya coefficient.

Note that 0 ≤ dB ≤ ∞ and 0 ≤ ρ ≤ 1. The coefficient ρ can define an-
other distance: dH(P1, P2) =

√

1− ρ(P1, P2), 0 ≤ dH ≤ 1, which is known
as the Hellinger distance [21]. Kailath [13] carefully studied dB and dH and
notes that dB is positive and symmetric but violates the triangle inequality,
while dH meets all axioms that define a metric. Here, we also note the work
of Jebara and Kondor [12] who arrive to the Bhatacharyya coefficient ρ via
the probability product kernel (PPK). They define ρ as the Bhattacharyya
affinity and confirm through the PPK definition that ρ is a PSD kernel.

The closed form for the Bhattacharyya coefficient ρ between N1 and N2

can be written as follows:

ρ(N1,N2) =
|Σ1|

1

4 |Σ2|
1

4

| 12Σ1 + 1
2Σ2| 12

exp{− 1
8u

⊤( 12Σ1 +
1
2Σ2)

−1u}. (4)

The closed form of the Hellinger distance between N1 and N2 is directly
obtained from the Bhattacharyya coefficient, however the expression for the
Bhattacharyya divergence has a more interesting compact form:

dB(N1,N2) =
1
8u

⊤( 12Σ1 +
1
2Σ2)

−1u+ 1
2 ln

1

2
|Σ1 +Σ2|

|Σ1| 12 |Σ2| 12
. (5)

Similar to dKL in Equation (2), dB in Equation (5) is expressed as the sum
of two components, one due to the difference in means, and the other due
to the difference in covariance matrices. If Σ1 = Σ2 = Σ, then dB is equal
to the Mahalanobis distance up to a scaling factor ( 18 ), and if µ1 = µ2 = µ,
then dB will express the dissimilarity between the matrices Σ1 and Σ2:

dB(N1,N2) =
1
2 ln

1

2
|Σ1 +Σ2|

|Σ1| 12 |Σ2| 12
. (6)

3.2 A close look at dKL and dB

We note that when the Bhattacharyya divergence and the symmetric KL di-
vergence were applied to N1 and N2, they factored the difference between the
distributions in terms of the difference between their first and second order
statistics. In other words, the difference between two Gaussian densities was
reduced to the difference between their parameters. Note also that dKL and
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dB in Equations (2) and (5) respectively have the same structure; a sum of
two components, one due to the difference in means (represented as a Maha-
lanobis distance), and the other due to the difference in covariance matrices.
More precisely, the first component in dKL is the sum of two Mahalanobis
distances, while the first component in dB is a variant of the Mahalanobis
distance that uses the inverse of an average covariance matrix. Note that this
explanation for the meaning of each term is due to Kullback [16] (p. 6,7). The
Mahalanobis distance comprising the first component of dKL and dB meets
the three metric axioms. However, since Equations (2) & (5) are positive and
symmetric but violate the triangle inequality, then the reason for the defi-
ciency in meeting the triangle inequality is due to the second component in
dKL and dB which measures the dissimilarity between covariance matrices,
i.e. Equations (3) and (6). This observation implies that the measures for the
difference between the PSD covariance matrices in Equations (3) and (6) do
not define proper metrics for covariance matrices on the manifold S

d×d
++ .

4 Designing a metric for Gaussian densities

The discussion above suggests that if there is a distance measure for co-
variance matrices that defines a metric on the manifold S

d×d
++ , then it is

possible to design a new separation measure specifically for Gaussian densi-
ties. The designed measure however, should meet certain requirements: 1) it
should satisfy all the metric axioms, 2) reduce to the Euclidean distance when
Σ1 = Σ2 = I, 3) reduce to the Mahalanobis distance when Σ1 = Σ2 = Σ,
and 4) reduce to a metric for covariance matrices, satisfying all metric axioms,
when µ1 = µ2 = µ.

Note that requirements 2 & 3 are in the same spirit of dKL and dB in
Equations (2) and (5) which provide an intuitive meaning and explanation
for the metric in any of these special cases. Although the Hellinger distance
dH is a true metric by definition, it does not yield such properties, however
dH has a defined range (dH ∈ [0, 1]) which might be desirable in certain
contexts.

Similar to dKL and dB , the new designed metric will comprise two compo-
nents, a measure for the difference in means, and a measure for the difference
in covariance matrices. However, unlike these measures, the second compo-
nent will be a true metric for real symmetric PSD matrices on the manifold
S
d×d
++ .
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4.1 A metric for symmetric and positive semi–definite

matrices

Förstner and Moonen [9] proposed a metric measure for covariance matrices
that is derived from a canonical invariant Riemannian metric on the manifold
S
d×d
++ . The measure is a full metric, invariant under affine transformations of

the coordinate system, and invariant to inversion. For two matrices {A,B ∈
S
d×d
++ } the distance measure between them is:

dFM (A,B) =

√

tr{ln2 Λ(A,B)}, (7)

where Λ(A,B) = diag(λ1, . . . , λd) is the solution of a generalized eigenvalue
problem (GEP): AV = ΛBV. The proof that dFM defines a metric on the
manifold S

d×d
++ and that it satisfies all the axioms of a metric can be found in

[9]. The basic idea of comparing covariance matrices is to reflect the deviations
in variances in all directions. In dFM , these deviations are evaluated as the
ratio of variances for all dimensions. The ln in dFM measures these deviations
as factors, while squaring guarantees that deviations by a factor of f and 1/f
will be equally penalized.

4.2 The proposed metric dG

Our metric is designed based on the first component of the Bhattacharyya
distance for the difference in means, and on the metric dFM in Equation (7)
for covariance matrices. For two Gaussian densities N1 and N2, the proposed
metric dG is defined as follows:

dG(N1,N2) =
(
u⊤S−1u

) 1

2 +

(
d∑

k=1

ln2 λk(Σ1,Σ2)

) 1

2

. (8)

Except for the invariance to inversion property of dFM , dG(N1,N2) inherits
all the properties of its constituting components: 1) it is invariant to affine
transformations, 2) it is a full metric, and 3) it fulfils the special cases of
requirements 2, 3 & 4 mentioned above.

Similar to the Bhattacharyya distance (5) and the symmetric KL diver-
gence (2), the proposed metric dG reduces the difference between N1 and
N2 to the difference between their parameters. Moreover, it has the exact
same structure as dKL and dB , where the first term measures the difference
in means, while the second term measures the difference between two covari-
ance matrices (i.e. two symmetric and PSD matrices). In other words, each
term in dG has a clear meaning and measures a well defined quantity.
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4.3 A kernel based on dG

We can define a kernel KG : Gd × Gd → R for two Gaussian densities based
on dG as follows:

KG(N1,N2) = exp{−dG(N1,N2)}. (9)

The kernel KG is an exponential function of a distance measure that is not
an Euclidean norm. Genton in [10] studies different classes of kernels with
their properties and points to [5] for a formal treatment for the case of KG .
In particular, Christakos and Papanicolaou [5] set conditions for the class of
exponential kernels when the distance that defines the kernel is not an Eu-
clidean metric on R

d. To show thatKG is a PSD kernel, we rewrite dG(N1,N2)
in Equation (8) as follows:

dG(N1,N2) = (u⊤Φ⊤Γ−1Φu)
1

2 +

(
d∑

i=1

ln2 λi

) 1

2

=





d∑

j=1

γj(u
⊤φj)

2





1

2

+

(
d∑

i=1

ωi ln
2 λi

) 1

2

, and hence

KG(N1,N2) = exp







−





d∑

j=1

γj(u
⊤φj)

2





1

2







exp






−
(

d∑

i=1

ωi ln
2 λi

) 1

2






,

(10)

where ωi = 1, for 1 ≤ i ≤ d, Φ = [φ1 . . . φd] is a column matrix with
the eigenvectors of S, and Γ = diag(γ1, . . . , γd) is the diagonal matrix of its
eigenvalues. To show that KG is a PSD kernel, one has to show that each term
in the right hand side (RHS) of (10) is a PSD kernel since the multiplication
of two PSD kernels is another PSD kernel [10] (p. 300). Let the lag vectors h1

and h2 and the weight vectors w1 and w2 be respectively defined as follows:

h1 = [u⊤φ1, . . . ,u
⊤φd]

⊤, h2 = [lnλ1, . . . , lnλd]
⊤, (11)

w1 = [γ1, . . . , γd]
⊤, w2 = [ω1, . . . , ωd]

⊤. (12)

It is shown in [5] (p. 475) that if an exponential kernel K is of the form:

K(h) = exp{−(w1|h1|p + · · ·+ wn|hn|p)
1

2 }, (13)

for a lag vector h ∈ R
n and a weight vector w ∈ R

n, then K is a PSD kernel
if and only if 0 < p ≤ 2. Setting p = 2 and using the definition of h1, h2, w1

and w2 from (11) and (12), then KG can be written as:
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KG(N1,N2) = exp
{

−
(
w1

1(h
1
1)

2 + · · ·+ w1
d(h

1
d)

2
) 1

2

}

∗

exp
{

−
(
w2

1(h
2
1)

2 + · · ·+ w2
d(h

2
d)

2
) 1

2

}

, (14)

where each term on the RHS of (14) has the exact same structure of (13),
and hence each term defines a PSD kernel. Consequently, it follows that KG

is a PSD kernel.
Note that the definition of K(h) in Equation (13) allows the introduction

of a kernel parameter σ > 0 in KG that controls the affinity between the
Gaussian densities (in fact there parameters) without loosing its PSD prop-
erty. Therefore, the final form of our proposed kernel is : exp{−dG(N1,N2)/σ}
and σ > 0.

Finally, if WG ∈ R
n×n is the kernel or gram matrix obtained from

KG(Ni,Nj), for 1 ≤ i, j ≤ n, then WG meets with the gram matrix

G = − 1
2D̃G (defined earlier) in that both are derived from DG and both

are symmetric and PSD. Therefore, using the results in [27, 22], there exist
matrices X1 ∈ R

n×d1 and X2 ∈ R
n×d2 s.t. G = X1X

⊤
1 and WG = X2X

⊤
2

that provide an embedding for the objects in X into a lower dimensional space
R

d1 and R
d2 , and the dimensionality d1 and d2 is the rank of the matrices G

and WG respectively. This establishes the relation between the triangle in-
equality of our metric and the positive semi–definitness of G and WG (please
refer to Section 1).

5 Experimental results

In the experimental results, we validate the proposed metric in two different
learning settings. First, we consider a supervised learning problem in the con-
text of learning a linear transformation for dimensionality reduction. Second,
we investigate the problem of unsupervised learning via spectral clustering
algorithms where each entry in the affinity matrix uses the proposed kernel
to measure the similarity between samples.

5.1 Supervised discriminative dimensionality reduction

Fisher/Linear discriminant analysis (FDA/LDA) seeks a low dimensional
subspace where dKL in Equation (2) is maximized [16]. For a 2–class/multi–
class problem, FDA/LDA model each class as a Gaussian distribution under
the assumption that all classes have equal covariance matrices. In this case,
dKL reduces to the Mahalanobis distance and FDA/LDA reduces to a GEP.
To extend this framework when the covariance assumption does not hold, De
La Torre and Kanade [7] proposed MODA that searches for a low dimen-
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Table 1 Specifications of the data sets used in the discriminant analysis experiments
where number of classes, size and the number of attributes are denoted by c, n and d

respectively.

Data set c n d Data set c n d

UCI Bupa 2 345 6 UCI Monks–III 2 554 6
UCI HouseVotes 2 435 16 UCI Pima 2 768 8
UCI Monks–I 2 556 6 UCI TicTacToe 2 958 9
UCI Monks–II 2 601 6

sional subspace that explicitly maximizes the objective function in Equation
(2). Our objective here is to use our separation measure in the same context
and compare it to other discriminant analysis techniques.

Here, we only consider 2–class problems and model each class, C1 and C2

as a Gaussian distribution; N1( · ;µ1,Σ1) and N2( · ;µ2,Σ2) respectively.
Similar to FDA/LDA and MODA, we search for a linear transformation B ∈
R

d×k with k < d such that it maximizes dG(N1,N2) in the lower dimensional
space. The linear transformation B can have any number of bases k such that
1 ≤ k ≤ min(d − 1, n − 1). This is unlike FDA/LDA which can only define
subspaces of dimensionality k ≤ min(c − 1, d − 1), where c is the number of
classes.

Let the distance between N1 and N2 under the linear transformation B

be defined as follows:

dG(N1,N2;B) = tr{(B⊤SB)−1(B⊤UB)}
︸ ︷︷ ︸

I(B)

+tr{log2{(B⊤Σ1B)−1(B⊤Σ2B)}}
︸ ︷︷ ︸

II(B)

,

(15)

where U = uu⊤ and S = ( 1

2
Σ1 + 1

2
Σ2). Maximizing Equation (15) with

respect to B yields a basis B∗
G that is optimal, in terms of separation, for

classes C1 and C2. Since there is no closed form solution for the maximum of
Equation (15), we use an iterative procedure based on gradient ascent:

Bt+1 = Bt + η
∂dG(N1,N2;B)

∂B
= Bt + η

∂I(B)

∂B
+ η

∂II(B)

∂B
,

where

∂I(B)

∂B
= 2UBΘ− 2SBΘ(B⊤UB)Θ, Θ = (B⊤SB)−1,

∂II(B)

∂B
= [2 logL{2(B⊤Σ2B)−1B⊤Σ2 − 2(B⊤Σ1B)−1B⊤Σ1}]⊤,

with L = diag(ℓ1, . . . , ℓk) is the eigenvalue matrix of (B⊤Σ1B)−1(B⊤Σ2B),
and η is the step length. The gradient ascent procedure starts with a reason-
able step length and it is decreased by 50% if it increases the value of the
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Table 2 Empirical error (with standard deviation) for discriminant analysis experiments
using a projection dimension k = 1. Due to space limitations, please see supplementary
material for k = 2, 3.

Data set LDA PCA+LDA PCA RCA MODA B∗
G

Bupa 44.7 (5.1) 37.3 (4.8) 45.5 (6.0) 37.9 (34.1) 34.1 (8.1) 32.0 (6.2)
HouseVotes 11.1 (5.5) 4.5 (3.4) 12.6 (5.8) 4.5 (3.4) 4.5 (3.4) 4.2 (3.6)
Monks–I 33.3 (8.6) 36.1 (10.5) 33.3 (8.6) 36.1 (10.5) 34.4 (10.5) 33.1 (12.2)

Monks–II 37.9 (4.8) 33.7 (4.2) 43.9 (5.4) 35.0 (4.9) 32.5 (4.5) 31.3 (4.7)
Monks–III 18.8 (10.2) 22.4 (6.7) 34.2 (9.1) 22.4 (6.7) 23.3 (8.4) 21.1 (8.0)
pima 37.2 (5.1) 24.0 (4.6) 39.6 (5.3) 24.0 (4.8) 27.8 (4.5) 28.5 (5.9)

TicTacToe 38.9 (11.0) 1.4 (4.6) 54.9 (9.6) 1.4 (4.6) 1.4 (4.5) 1.5 (4.8)

objective function. Other strategies such as line search are possible but this
simple method has provided good preliminary results. Similar to MODA, the
objective function in Equation (15) is non–convex and any gradient ascent
procedure can be trapped into local minima. Therefore, we typically start
the algorithm with multiple initializations and select the solution B∗

G with
the lowest training error.

The error considered here is the error of a quadratic classifier in the lower
dimensional space. Since each class is modelled as a Gaussian distribution, a
sample x with an unknown label y is assigned the label of its closest class,
where closeness is based on the Mahalanobis distance between the sample x

and the class Cj : (µj − x)⊤Σ−1
j (µj − x), j = 1, 2.

Table (1) shows seven data sets from the UCI ML Repository that are used
in this experiment. The empirical error (with standard deviation) was aver-
aged over 10 folds nested cross validation for three different projection dimen-
sions k = 1, 2, 3. Table (2) shows the empirical error for LDA, PCA+LDA,
PCA, RCA [2], MODA and B∗

G on the UCI data sets for projection dimen-
sion k = 1. It is clear that linear transformation B∗

G yields very competitive
results with standard discriminant analysis techniques and with more recent
approaches such as RCA and MODA.

5.2 Unsupervised clustering of images

In the second experiment, we consider an unsupervised learning problem
where our main objective is to compare different distance and divergence
measures between Gaussian densities in the context of clustering. Our hy-
pothesis is that full metric measures such as dG and dH will yield better
clustering results than dKL, and very comparable to ρ.

Here, we adopt the same conceptual framework of Kondor and Jebara
[15] that models each image as a bag of pixels (BOP). In this framework,
instead of directly modelling each BOP as a Gaussian distribution, Kondor
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Table 3 Col. 1 The three data sets used in the spectral clustering experiments. Col. 2

Number of classes, size and attributes for each data set. Col. 3 The accuracy of spectral
clustering using for the four similarity matrices.

Data set c n d WB WKL WH WG

Yale–A face data set 15 165 32×32 51.0 57.7 64.9 59.5
KTH TIPS grey scale textures 10 810 200×200 56.9 56.1 60.5 60.2

USPS handwritten digits 10 7291/2007 16×16 56.2 57.0 55.2 59.1

and Jebara map each BOP to a high dimensional feature spaceH using kernel
PCA (KPCA) [23] in order to capture more nonlinear relations between the
pixels. For KPCA, they use a Gaussian kernel with kernel width r. Next,
they model each BOP in H as a Gaussian distribution with a full covariance
and regularization parameter ǫ. That is, each image is finally represented as a
Gaussian distribution in H. Finally, they use SVMs with the Bhattacharyya
kernel to classify the images. Please refer to [15] for more details. Here, we
apply spectral clustering (SC) [18] on the Gaussian distributions in H instead
of using SVMs.

Four similarity measures are used to construct the similarity or (adjacency)
matrix for SC : WB = ρ(Ni,Nj) – the Bhatacharyya kernel of [15], WKL =
exp{−dKL(Ni,Nj)/σ} – the KL kernel of [20], WH = exp{−dH(Ni,Nj)/σ},
and WG = exp{−dG(Ni,Nj)/σ}, where σ > 0 and 1 ≤ i, j ≤ n. Note that,
in total, there are three parameters to optimize in this framework; r, ǫ and
σ. According to the recommendation in [18, pp. 6], we use the normalized
SC of Shi and Malik [24]: Lrw = I − D−1W, where W can be replaced by
any of the previously defined similarity matrices, Lrw is the normalized (as
a random walk) Laplacian, and D = diag(W1n×n). To proceed with SC,
we find the c eigenvectors corresponding to the c smallest eigenvalues of the
GEP: Lrwv = ωDv and form the matrix V = [v1 . . .vc] ∈ R

n×c, where c is
the number of clusters. Now each Gaussian distribution in H (corresponding
to one image) is mapped to a row vector in V. Finally, we cluster the rows
of V using the k–means algorithm – with multiple initializations – and select
the clustering configuration with minimum distortion.

Three image data sets are used in these experiments and shown in Table
(3). Due to the large size of the USPS data set, the first 100 digits of each
class are considered as our data set. The number of clusters is assumed to be
known and its equal to the number of classes in each data set. To measure
the clustering accuracy, we adopt the technique in [28] that uses a c × c
confusion matrix C and the Hungarian algorithm [14] to solve the following
optimization problem: max tr{CP}, where P is a permutation matrix, and
the result is divided by the number of data points to be clustered.

Table (3) shows the results of SC using the four different similarity mea-
sures. Due to the difficulty of clustering these images with a general and
simple representation such as BOP, and due to sensitivity of this framework
to the choice of parameter values as acknowledged by Kondor and Jebara,
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the accuracy is generally low for all the data sets. Nevertheless, we note the
difference between ρ and dKL on one hand, and dH and dG on the other hand.
Counter to our hypothesis, the Bhattacharyya affinity ρ did not perform as
good as the similarities induced by dG and dH .

The triangle inequality plays an important role for W and consequently
for clustering. In the GEP of SC, Lrw should be PSD, D should be positive
definite, and hence W should be PSD as well. If the triangle inequality is
not satisfied, W will be non–definite and the GEP will yield an inaccurate
embedding. It follows that the row vectors of V will have inaccurate coor-
dinates, and consequently k–means will yield an inaccurate clustering. The
amount of inaccuracy is tightly related to how far is W from a PSD matrix.
This is where parameter σ comes into play for exp{−dKL/σ} for instance,
where it helped improve the positive semi–definiteness of WKL thereby im-
proving the clustering accuracy. A deeper and a more formal investigation is
currently undergoing in this direction.
Concluding remarks : We have designed a metric that measures

the separation or difference between two Gaussian densities. The measure
has interesting properties and consequences for various learning algorithms
and showed promising preliminary results in two different learning settings.
Also, we have considered the importance of the triangle inequality axiom for
metrics and divergence measures, and its relation to the PSD property of the
gram matrix derived from these measures. Although our metric is a designed
measure, an important and legitimate question to ask is, what is the original
divergence measure between P1 and P2 such that when plugging inN1 andN2

yields our metric dG ? The right answer is to generalize the analysis presented
here using various divergence measures from the class of Aly–Silvey distances
to the general form of the exponential family of probability distributions. On
the one hand, it allows us to study which divergence measures factorize the
difference in the exponential family in terms of difference in their statistics,
and on the other hand, study which of these divergence measures satisfy the
three metric axioms or yield symmetric PSD gram matrices. This analysis
can result in a very rich set of measures that have different properties and
characteristics, however this remains to be explored.
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